
STBoX 3.0 Generic 
Software Testing  
Process Framework
The Road to Testing Maturity



2 Folio footer text



STBoX 3.0 Generic Software Testing Process Framework i

CTG Belgium N.V. / S.A • Woluwelaan 140A • B-1831 Diegem, Belgium • +32 2 720 51 70
www.ctg.eu • http://jobs.ctg.eu • https://training-eu.ctg.com • www.stbox.eu

Contents
Preface ii

Generic Software Testing Process 1

Generic Testing Maturity Model 5

1. Test Project Preparation 6

2. Test Build  22

3. Test Execution 34

4. Test Project Closure  46

5. Test Management  56

6. Quality Management  72

Acknowledgments 86

STBoX 3.0 Generic Software  
Testing Process Framework
STBoX 3.0 provides a generic software testing process framework 

that offers testing governance practices based on CTG’s extensive 

testing experience with many projects and clients.



ii Preface

Preface
It was in 1998 that CTG, as one of the first IT services providers to do so, positioned software testing as a 
marketable service and began assisting many companies in many industries in setting up software testing 
practices. In 2006, the experience gained during those first years led to the launch of STBoX (Software Testing 
Based on CTG eXperience), CTG’s own software testing methodology.

Today, I am proud to announce STBoX 3.0, the result of CTG continuously working to improve our testing services 
offering. STBoX 3.0 represents the evolution of STBoX from a methodology for software testing (released in 2006), 
to a software testing knowledge base for different environments (released in 2009), to this generic software testing 
process framework, applicable to many different situations and contexts. STBoX 3.0 proves CTG’s leadership in 
the testing services market.

STBoX 3.0 offers project managers, test managers, and quality managers a generic software testing process that 
can be tailored to the specific context of the project they are working on. Through an ingenious system of add-
ons, STBoX 3.0 offers tips and tricks on tuning testing practices for the project management methodology that is 
being applied, the specific test object being tested, or the specific test type at hand. The modularity of the add-
ons supports easy maintenance of STBoX 3.0 to keep up with the newest developments in the software testing 
arena. Add-ons for Agile and mobile application testing are readily available, and add-ons for performance and 
security testing will be added soon.

Additionally, STBoX 3.0 offers policy makers a generic testing maturity model to measure and improve their 
company’s testing processes as needed. Software testing has become a mainstream software development 
activity. It’s no longer a question of introducing software testing, but a question of how software testing can be 
improved to face new challenges, which are ample. DevOps and shortened time to market, the internet of things 
and the multitude of mobile devices, and the ever-increasing importance of quality characteristics like security, 
performance, and usability are only a few examples of current software testing challenges that need to be 
conquered.

Finally, STBoX 3.0 also offers all test professionals a source of inspiration to get their testing started quickly. STBoX 
3.0’s clear and transparent organization will swiftly lead professionals to the right testing choices, no matter which 
software testing challenges they are facing.

Happy reading and happy testing!

 
 
 

Pieter Vanhaecke 
Director, Testing Services 
CTG Europe



STBoX 3.0 Generic Software Testing Process Framework 1

Generic Software Testing Process
“STBoX 3.0 offers a 
generic software testing 
process that allows 
project managers, test 
managers, and quality 
managers to plan, design, 
execute, and monitor 
testing in any project, 
tailored to the needs of 
that particular project.”

STBoX 3.0 offers a generic software testing process that allows project 
managers, test managers, and quality managers to plan, design, execute, 
and monitor testing in any project, tailored to the needs of that particular 
project.

The generic software testing process provides the following key features:

• Supports management of testing activities

• Supports testing by enforcing a common way of working to design tests, 
document test execution, and log defects

• Centralizes information in a central repository in a consistent way

• Prevents data loss

• Provides project intelligence by delivering clear metrics related to the 
test activities (test design, test execution) and the quality of the test 
object (e.g., defects raised)

• Facilitates the data flow between different stakeholders (developers, test 
engineers, project managers, etc.)

The framework is constructed around 15 core testing activities within six testing phases. These six phases are Test 
Project Preparation, Test Build, Test Execution, Test Project Closure, Test Management, and Quality Management. 
The phases group a number of testing activities together. They are related to each other in terms of their 
respective goals, their place in the software development life cycle, and the (testing) staff involved.

For each testing activity corresponding to the testing phases listed above, the framework offers a detailed 
description that consists of four sections: goals, steps, maturity, and add-ons.

Goals
In the goals section, a high-level 
definition of the respective testing 
activity will be given.

Steps
The steps section provides more 
detailed insight on what needs to be 
done during the respective testing 
activity. The complete series of testing 
steps needs to be executed in order to 
complete the respective testing activity.

 

Maturity
Through the maturity section, it is made 
clear to what level of professionalism 
the respective testing activity can 
be executed. It will explain how the 
different steps of the respective testing 
activity need to be executed in order to 
achieve a certain maturity level. 

Add-ons
In the add-ons section, relevant tips and 
tricks will be given on how to tailor the 
respective testing activity to a particular 
test object, testing type, or even 
software development life cycle. Add-
ons are available for: 

• Agile testing

• Mobile testing



2 Generic Software Testing Process

Testing Phases

Test Project Preparation
A test project always starts with the Test Project 
Preparation phase in order to get a good overview of 
the project and begin to organize testing activities. 
All of the practical aspects (such as scope, approach, 
schedule, budget, and test environment) are discussed, 
decided upon, and compiled in the test plan. The 
objective is to:

• Determine the scope of the test assignment

• Develop a differentiated test approach

• Agree upon the overall test approach

• Agree upon test schedule and budget

• Foresee the required test environment

During this phase, the following testing activities will  
be executed:

• Plan test project

• Determine test approach

Test Build
The Test Build phase ensures that all testing activities 
that require completion before test execution can start 
and are conducted on time. The test model is delivered 
and the test environment is established. Delivering the 
test model includes:

• Complete features to test tree

• Create test procedures

• Create test cases, test scripts, and checklists

• Create test execution schedules

During this phase, the following testing activities will  
be executed:

• Design tests

• Set up test environment 
 

Test Project Preparation

Plan Test  
Project

Design  
Tests

Staff and 
Manage Team

Monitor 
Organization

Verify Test 
Environment

Monitor and 
Adjust Test Plans

Monitor  
Product

Manage 
Anomalies

Monitor  
Process

Evaluate Test 
ProjectReporting

Determine Test 
Approach

Set Up Test 
Environment

Execute  
Tests

Consolidate Test 
Deliverables

Test BuildTest Management Quality Management

Test Execution

Test Project Closure



STBoX 3.0 Generic Software Testing Process Framework 3

Test Execution
Test Execution takes place after the tests have been 
built and the test environment is ready for use. All or 
part of the different test execution schedules that were 
prepared in the previous testing phase will now be 
executed according to the differentiated test approach 
developed during the Test Project Preparation phase.  
It includes:

• Verify readiness of the test environment

• Execute test execution schedules

• Report anomalies

During this phase, the following testing activities will  
be executed:

• Verify test environment

• Execute tests

Test Project Closure
When all other testing activities have been completed, 
the test project needs a clear and clean closure.  
This entails: 

• Evaluate the test project that is about to be closed

• Determine lessons learned for future (test) projects

• Hand over all test deliverables to future owner

• Archive test deliverables for future reuse

• Archive test deliverables for the purpose of 
compliance with relevant regulation framework

During this phase, the following testing activities will  
be executed: 

• Evaluate test project

• Consolidate test deliverables

 

 

 

Test Management
Test Management involves a set of continuous test 
project activities that are needed to ensure that the test 
project is managed professionally. Test Management 
includes:

• Manage the test team

• Follow up on the test project (planning, budget, 
scope, quality)

• Provide status report on all required topics and levels 
of detail

• Follow up on all detected anomalies until closure

During this phase, the following testing activities will  
be executed:

• Staff and manage test team

• Monitor and adjust test plans

• Manage anomalies

• Reporting

Quality Management
The purpose of Quality Management is to manage, 
guide, and improve the quality of the test project as 
a whole. This clearly exceeds the task of providing 
insight into the quality of the object which is the focus 
of the test project itself. Quality Management is about 
continuously monitoring and adjusting (improving) the 
quality of:

• The test process that is being applied in the  
test project

• The (intermediate) test project deliverables

• The testing organization

During this phase, the following testing activities will  
be executed:

• Monitor organization

• Monitor product

• Monitor process



4 Generic Testing Maturity Model



5STBoX 3.0 Generic Software Testing Process Framework

Test Maturity Levels

Generic Testing Maturity Model
STBoX 3.0 also offers a generic testing maturity model that allows policy makers to measure and improve a 
company’s testing processes according to their needs.

The generic testing maturity model provides the following key features:

• Supports measuring the actual testing performance of the company (as is)

• Supports comparing the actual testing performance of the company to industry standards

• Supports defining the targeted testing performance of the company (to be)

• Helps to design an improvement roadmap from “as is” to “to be”

The framework recognizes four different test maturity levels: initial, starter, experienced, and master. These levels 
provide a generic profile of the stages through which a company’s testing activities evolve when gaining maturity 
in the way these activities are being executed. We say that, for a particular testing activity, a company (or project) 
is in a particular test maturity area when it is on its way to completing all of the conditions described in the 
corresponding generic maturity profile for that activity. 
When all conditions have been completed, we say the 
company (or project) is at a particular test maturity level.

Different test maturity levels for the respective testing activities 
allow testing projects or companies to focus on those areas 
that are most important to them. This way, the model provides 
a continuous test process improvement model.

Initial 
If being executed at all, testing is executed 
in an uncontrolled and even chaotic way. 
No formal techniques, nor test tools, are 
being applied. The quality of the testing 
activities and results exclusively rely on the 
quality of the individuals (heroes) executing 
these activities. There is no (structured) 
testing process available to support and 
align the different testing activities in the 
project. Stakeholders are hardly involved.

Starter
Testing activities are being executed in a 
controlled way, but no formal techniques 
are being used. If applied at all, tools 
are being used on an ad hoc basis. The 
quality of the testing activities depends on 
local (to the project) organization of test 
processes. However, on a corporate level, 
there is no uniform test process defined 
nor documented. Principal stakeholders are 
consulted and informed about the major 
deliverables (test plan, test approach, test 
reports) of the test project.

Experienced
Testing activities are being executed in a 
controlled and uniform way. A documented 
test process is available for all projects. 
Formal techniques are being used. 
Test tools are applied to support the 
documented test process. The quality of 
the testing activities now depends on the 
availability of repeatable test processes on 
a corporate level. All stakeholders play an 
active role in the test process.

Master
Testing activities are being executed in a 
controlled and uniform way. A corporate 
test policy and test strategy are available 
for all (test) projects. A documented test 
process implementing the corporate test 
policy and test strategy is available for 
all projects. Advanced formal techniques 
offering maximum control over test 
activities are being used. The use of test 
tools is totally integrated and documented 
with the test process. The quality of the 
testing activities is continuously monitored 
and improved upon. All stakeholders play 
an active role in the test process.

“STBoX 3.0 also offers a generic 
testing maturity model that allows 
policy makers to measure and 
improve a company’s testing 
processes according to their needs.”



6

Goals
In the Plan Test Project phase, the test 
plan of the project is defined. The 
test plan answers questions regarding 
purpose, scope, organization, timing, 
budget, test environment, approach, and 
tools needed during the test project. The 
test plan is created preferably in parallel 
with the preparation of the general 
project plan. It is a living document 
which will be monitored and adjusted 
throughout the project life cycle. This 
activity involves the initial set up of the 
test plan; monitoring and adjusting are 
described in a separate activity.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of determining the 
test plan for the respective test project that satisfies 
the business requirement for testing of having a 
consensus and approval on what the goals of the 
test project are, how they will be achieved, what it 
will cost, and how the test activities are organized 
by focusing on:

• The context of the project

• The definition of the test scope

• The approach that will be followed to test the 
defined scope

• The workload needed to obtain the test goals

• The setup of the test organization

• The timing in which the full test scope can be tackled

• The test environment needed to obtain the test results

• The way risks are handled during the project life cycle

• The consolidation of all activities performed during 
the Plan Test Project phase

• The communication of the test project plan

and is achieved by

• Studying the project context

• Determining the test scope

• Determining the test approach

• Setting up the test organization

• Creating a test schedule

• Determining the infrastructural needs

• Setting up risk management

• Creating a test plan

• Distributing the test plan 

1. Test Project Preparation (TPP)
1.1 Plan Test Project

Test Project Preparation



TPP 1.1.1 Study Project Context             
In order to plan and organize all test activities, a solid 
understanding of why the project itself exists and what 
the expectations of the project are is crucial. In this step, 
the test manager makes sure he understands the project 
background and what the goals of the project are.            

TPP 1.1.2 Determine Test Scope                               
The test manager defines what will be and what 
will not be tested. He, in other words, comes to a 
consensus on what the scope of the test project is. 
Defining the scope also clearly implies the definition 
of aspects which are out of scope for testing. A first 
indication of scope is made on test levels, test types, 
test items, and regression testing.                             

TPP 1.1.3 Determine Test Approach         
Determining the test approach is clearly part of planning 
the test project. Based on the project’s scope, now the 
test approach is defined. This test approach needs to be 
dedicated to the test project’s particular needs. As many 
things need consideration when doing so, this step is 
described as a separate testing activity, “Determine Test 
Approach.” The project’s test approach is documented 
and maintained in the test plan.

TPP 1.1.4 Determine Workload          
Meeting the test scope by using the defined test approach 
implies a list of test tasks that need to be accomplished. The 
test manager estimates what the workload of those tasks is 
in order to determine the workload of the test project.

TPP 1.1.5 Set Up Test Organization                         
The defined approach and estimated workload require test 
competences and resources. The test manager defines 
how the test team is assembled, who the team members 
are, and what their roles and responsibilities are.                    

TPP 1.1.6 Determine Infrastructural Needs
The test tasks that need to be performed require 
specific test environment needs. Those needs are 
defined by the test manager and can be on the level 
of hardware, network, middleware, system software, 
development software, testing software, application 
architecture, system management procedure, etc.

TPP 1.1.7 Create Test Schedule           
The test manager needs to define the existing 
dependencies and constraints which will influence the 
test tasks. Dependencies can exist between the defined 
test tasks and/or between other projects. Constraints 
can be introduced due to timing, resource, and/or 
quality restrictions. The test schedule represents the 
timing and budget of the test tasks, taking into account 
all defined dependencies and constraints.

TPP 1.1.8 Set Up Risk Management                                      
The risks that could possibly impact the to-be-
achieved test scope are identified by the test manager. 
Mitigating measures are defined together with the 
risks, and risk monitoring is put in place.

TPP 1.1.9 Create Test Plan                                             
The test manager consolidates all available information 
on the test project obtained in the previously 
described steps in a test plan. This is the initial version 
of the test plan which will be monitored and adapted 
during the “Monitor and Adjust Test Plan” activity.

TPP 1.1.10 Distribute Test Plan   
The test manger distributes the initial version of the  
test plan.                                       

TPP 1.1.1

TPP 1.1.6

Study Project 
Context                 

Determine 
Infrastructural 
Needs                      

Determine  
Test Approach                             

Set Up Risk 
Management                                       

Determine  
Test Scope                                

Create Test 
Schedule                                      

Determine 
Workload                                 

Create Test  
Plan                                              

Set Up Test 
Organization                          

Distribute  
Test Plan                                           

TPP 1.1.2

TPP 1.1.7

TPP 1.1.3

TPP 1.1.8

TPP 1.1.4

TPP 1.1.9

TPP 1.1.5

TPP 1.1.10

Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 7



8

Maturity
The testing activity “Plan Test Project” 
that satisfies the business requirement 
of having a consensus and approval on 
what the goals of the test project are, 
how they will be achieved, what it will 
cost, and how the test activities are 
organized is at:

Initial level 
The “Plan Test Project” testing activity 
is executed in an uncontrolled and 
chaotic way. 

• The steps described in this activity are 
organized for some projects, but not for 
all projects in the organization. 

• If the activity is organized, it is not 
organized by using a common approach. 
Each project decides on its own how 
the test project planning is performed 
(chaotic and ad hoc).

• For some projects, a test plan is created 
and documented.

• The stakeholders are not involved in the 
test project planning.

Starter level 
The “Plan Test Project” testing activity 
is executed for all projects in the 
organization, but not by using a common 
approach. The approach for planning the 
test project is defined by the project, not 
by the organization. 

• A test plan is created for each project 
and documented. 

• The test plan is not necessarily a separate 
document, it can be part of  
the project plan.

• The test plan has no fixed format. 
Instead, the project defines which format 
is used. There is no general template 
within the organization. 

• The steps followed to perform this 
activity do not follow a uniform process.

• The test project manager or project 
manager decides on the content of the 
test plan. 

• Stakeholders are not involved; they can 
be consulted during the creation of the 
test plan, but do not participate actively 
in the process. It is the test manager who 
makes the decisions. 

• Upon completion, the test plan is only 
distributed to the principal stakeholders 
of the project.

Experienced level 
The “Plan Test Project” testing activity is 
executed for all projects by making use of a 
common approach. 

• A test plan is created for each project 
following a fixed format, which is applied 
to all projects. 

• A uniform test plan template is available 
and used within the organization. 

• The test basis is defined by making an 
inventory of all relevant information 
about the project. This enables the ability 
to keep track of which documents are 
available and which documents are not 
yet available. 

• The following topics are clearly 
addressed in the test plan: test 
scope, test approach, test workload, 
test organization, test schedule, test 
environment, and risk management. 

• A test plan is created with active 
involvement of the test manger and the 
principal stakeholders. 

• Upon completion, the test plan is only 
distributed to the principal stakeholders 
of the project. 

• A kickoff meeting with the principal 
stakeholders is organized to explain the 
content of the test plan. 

• The approval of the test plan is implicit. 

• Acceptance criteria and entry/exit criteria 
are defined.

Test Project Preparation



Master level 

The “Plan Test Project” testing activity is 
executed for all projects and documented 
in a test plan which follows the corporate 
test policy and test strategy guidelines.

• The following topics are clearly 
addressed in the test plan: test 
scope, test approach, test workload, 
test organization, test schedule, test 
environment, and risk management.

• Multiple test plans with different levels or 
types can be created depending on the 
scope, complexity, and/or criticality of the 
test projects.

• The test basis is defined and frozen 
by making an inventory of all relevant 
information about the project. This 
enables the ability to keep track of which 
documents are available and which 
documents are not yet available. 

• A corporate test policy and strategy  
are available.

• All stakeholders fully participate in the 
creation of the test plan, depending on 
their responsibility.

• The test manager and all involved 
stakeholders cooperate to produce the 
test plan.

• Upon completion, the test plan is 
distributed to all stakeholders.

• A kickoff meeting with the principal 
stakeholders is organized to explain 
the content of the test plan. Separate 
kickoff meetings can be organized 
depending on the needs of the different 
stakeholders or the size of the project.

• Workshops are organized to define the 
content of the test plan. 

• The approval of the test plan is implicit, 
but can be formally organized if needed.

• The test plan is treated as a living 
document during the project life cycle 
and is regularly updated if needed, and 
version management is applied.

• Acceptance criteria, entry and exit 
criteria, pass and fail criteria, and 
suspension and resumption criteria  
are defined.

9STBoX 3.0 Generic Software Testing Process Framework



10

Agile Testing  
Add-ons

Release Planning
In an Agile environment, the Test Project Preparation 
phase is an activity that is part of release and roadmap 
planning. The test manager and testers, together with 
all other team members, participate in the release 
and roadmap planning session in order to give input 
concerning complexity, dependencies, priorities, effort, 
test strategy, and the approach that need to be taken 
into account. 

The intention of release planning is to understand 
the goal of the project and to identify the high-level 
features that need to be delivered, breaking features 
and epics into user stories and defining acceptance 
criteria. The product owner sets the release goal and 
release timeframe. The team performs high-level effort 
estimation, and based on this result and the velocity 
of the team, the release planning is performed. The 
length of iteration influences the frequency at which the 
developed features can be delivered to the customer. 
At the beginning of the project, the tester assists with 
selection of iteration length. 

Test Scope
The test scope is based on defined features added to 
the product backlog and the prioritization made by the 
product owner. Product backlog prioritization is not 
static, but a recurrent process that constantly impacts 
the test scope. Business value, clarity, and dependencies 
are some factors that need to be considered when 
prioritizing the user stories. The role of the tester is to 
assist the product owner in defining the priorities and 
verifying whether features are testable. 

Requirements are not yet known in detail at the 
beginning of the project. An Agile environment allows 
for changes to be made after the initial planning by 
taking the client’s feedback into account. The customer 
has the opportunity to make changes and add, remove, 
or reprioritize features, resulting in a changed test scope.

Workload
In comparison to many Waterfall projects, in an Agile 
environment, the test effort is not separately estimated, 

but is part of the total effort of developing and delivering 
a user story or requirement. The estimation is provided 
by the whole team and is based on the complexity of the 
story and the test activities that have to be executed to 
meet definition of done. 

Tasks that have to be taken into account during the 
estimation meeting are:

• Set up environment

• Design test cases

• Execute test cases

• Perform exploratory testing

• Perform test automation

There are several estimation techniques that are used 
to define the workload:

• Planning Poker

• T-Shirt Size

• Swimlane Sizing

Risk Management
Agile teams promote communication, which enables 
the team to respond quickly to change. This makes 
them better equipped to deal with risks than teams 
in more traditional development environments. It is a 
good practice to visualize and track associated risks 
and actions on a risk board. During the daily stand-
up meeting, risks and impediments can be escalated 
and are picked up by the Scrum master to unblock the 
situation. Risks are also formally included in the agenda 
of the iteration planning meetings, iteration reviews, 
daily stand-up meetings, and retrospectives.

Test Plan
The Agile manifesto clearly favors working software 
over comprehensive documentation, and responding 
to change over following a plan. So, often only a 
lightweight document that centralizes the most crucial 
information is created as a test plan. All practical 
aspects such as scope, strategy, approach, schedule, 
budget, and test environment are discussed, decided 
upon, and compiled. According to James Bach, the 
plan is the intersection of strategy (the set of ideas that 
guide your test design) and logistics (the application of 
resources to fulfill the strategy).1 

Test Project Preparation

1 Bach, James, and Michael Bolton. “Rapid Software Testing – Appendices.” Published class lecture. Satisfice, Inc., 2015. http://www.satisfice.com/rst-appendices.pdf



STBoX 3.0 Generic Software Testing Process Framework 11

Test Approach
There are several factors that play an important role 
in determining the test approach. It is crucial to 
understand that the goal of each sprint is to produce a 
potentially shippable product. A cross-functional team 
with the necessary skills to complete the sprint backlog, 
as well as explicit definitions of ready and done, is key 
to successfully delivering working software at the end 
of each sprint.

A definition of done is a set of criteria that describes 
what will be delivered at the end of each iteration, 
not only in terms of functionality, but in terms of 
quality as well. It is a kind of checklist and can be 
seen as exit criteria that help to create consensus 
and common understanding, which is crucial to a 
high-functioning Agile team. Defining and staying 
true to the definition of done is the responsibility 
of the whole team. The tester assists in defining the 
set of criteria. Agile development does not work if 
stories, iterations, or releases aren’t “done.” There 
are different levels of “doneness:”

• Task level 

• User story level 

• Iteration level 

• Release level

Other aspects of the test approach are the Agile 
testing quadrants and automation pyramid, which help 
to define the approach for regression testing and the 
quality attributes to be considered in testing, and will 
be discussed in detail in the “Test Execution” activity 
section (3.2). Due to the incremental development, 
the risk of regression is increased in Agile projects. 
Therefore, it is important to manage this risk by 
defining the right test approach.

Test Team
In general, in an Agile environment, testers are part of 
a multi-functional team in which every team member 
should have the capabilities to prepare, execute, or 
automate tests. From an Agile point of view, the whole 
team has to contribute to testing activities. It is the 
responsibility of the entire team to ensure the expected 
quality of the software. The Agile test plan is a good 
place to document which test resources are part of the 
Agile teams, and which and when outside resources will 
be added to the project. 

The allocation of the test resources must be done in 
close cooperation with other Agile teams, the project 
manager, and the test manager. 

Infrastructural Needs
The benefit of iterative and incremental development 
is a short feedback loop. However, this requires 
continuous integration and deployment. It is self-
evident that this implies the availability of tools.

Continuous integration is the practice in which 
integration happens early and often to avoid problems, 
and thus, reduce rework, cost, and time. The team 
frequently integrates new or changed code, often 
meaning that no intervening window remains between 
a code commit and a new build.

Normal practices using a scheduled build can cause 
developers to miss build and deploy slots, causing 
errors to arise without being noticed until after the 
deployment is completed.

The principle behind continuous integration is that a 
build can happen at any time or, put in another way, every 
commit can trigger a complete and functional build. 

An automated build process that can be triggered 
at any time lies at the core of continuous integration. 
Many teams use a one-button-deploy practice that not 
only builds a new version of the software, but also does 
it very quickly so that the team doesn’t have to wait to 
start new tasks until the build has completed. This goes 
for both coding and testing tasks. The practice that 
every commit should trigger a new build in order to 
verify that the changes integrate correctly can also be 
adhered to with an automated build.

Source control management and version control 
are key to continuous integration in the Agile 
development process. It’s not only a matter of keeping 
track of all the code commits, but also making sure 
that all elements required to build the project are in 
place in the central repository so that the availability 
of additional (external) dependencies can never 
become an issue when building.

With the frequency of builds being deployed, it is 
obvious that the testers will never be able to keep the 
pace if they have to manually perform both regression 
and new test cases. Therefore, it is important to start 
automating sanity checks or regression tests at first. 



12 Test Project Preparation  

This will not only strengthen the current build process, 
but will continue to give the testers more valuable time 
for testing new features and performing exploratory or 
session-based testing.

All of these activities rely heavily on the availability 
and maturity of tools. This includes automated tools, 
as it makes little sense to automate the build process, 
repository control, and testing if you need to put a 
large amount of manual labor into using the tools 
themselves. 

The selection of tools should be made at the beginning 
of the project. It depends on the team and tool 
maturity, and also on the company policy for tools  
and vendors. 

Mobile Application 
Testing Add-ons

Expectations
Mobile applications tend to be built for use under very 
specific conditions. Often, the target audience or the 
environment in which the app is to be used are very 
specific. Generally speaking, it seems that expectations 
of mobile applications are higher.

Therefore, testers should make an extra effort when 
studying the project context. It is crucial that testers 
fully understand the expectations of the mobile 
application under test. Asking the right questions 
about these expectations right from the start is an 
absolute must to be able to design an adequate test 
approach later on. When involved in an early stage, 
testers might even contribute to determining the exact 
expectations of the particular mobile application.

Policy Restrictions
When studying the project context, understanding 
relevant company policy regarding the use of mobile 
test devices is also very important. Such policies can 
have a big impact on which tests to plan. Examples of 
company policies that can restrict the testing activities 
you can deploy are: 
 

• Authorization to leave the building for field testing

• Authorization to connect to the company’s wireless 
network

• Authorization and budget to purchase mobile 
devices, SD cards, SIM cards, etc.

• Authorization to use a company car to perform  
road tests

Test Scope
Testers should reach beyond the boundaries of 
traditional thinking when determining the exact scope 
of a mobile application testing project. There are a 
number of features related to mobile applications 
that deserve testers’ special attention, listed in the 
checklist below.

• Network: Think about how you want the app to work 
with Wi-Fi, 3G, 4G, switching between networks, 
switching between network strengths, etc. For 
instance, it is possible that Wi-Fi signals for a certain 
app are not as important, so you can decide to leave 
this out of scope.

• Target audience: Think of which type of users will 
use your app, which OS, which device, etc. Due to 
the large number of possible devices, it is impossible 
to test each possible configuration. To determine 
the test scope, you can put emphasis on the most 
frequently used devices of your target audience, 
while considering the full spectrum between low-end 
and high-end devices.

• Movement and Location: It is expected that the app 
will be used while moving (for instance, a running app 
or an app designed for use in vehicles), or will it be 
used in a static environment? Will the app be used 
inside or outside? If your application is used outdoors 
and it consumes a lot of energy, it might suffer from a 
battery drain, forcing its user to search for alternative 
solutions.

• User Load and Time: Is the expected user load 
spread more or less throughout the day? Or are there 
specific moments in the day when we can expect the 
user load clustering? 

• Interactions: Will the application only be tested in 
isolation, or will its interaction with other applications 
be added to the scope? Think of the way the app will 
interact with other apps—how does your application 
handle interruptions (e.g., a phone call) and does 
your app continue to function while other existing 



STBoX 3.0 Generic Software Testing Process Framework 13

apps of your company are running? Be aware of the 
fact that simultaneously running applications might 
have an impact on each other. Consider testing your 
app while other frequently-used apps are running as 
well in the background. 

• Service Availability: Think about the availability 
of external services and how this would impact the 
performance of the mobile application when the 
availability of these services is hindered (through 
network issues, server downtime, infrastructural 
changes, etc.). The tester can test this through 
extensive API testing, implementing stubs, and by 
using service virtualization and network virtualization 
to cover the various external dependencies of the 
mobile application.

Testing Staff
The competences needed from testing staff employed 
in mobile application testing projects also requires the 
test manager’s extra attention. Generally speaking, it 
can be argued that a test manager might want to look 
for testers with a proper set of technical skills. To deal 
with the amplitude of possible devices and operating 
systems, tooling will inevitably be brought into the 
project to cover the most ground. Testers should be 
able to understand and operate the tools used.

The test manager can also consider bringing in end 
users from outside of the project team and organize 
some beta testing or hallway testing. Typically, beta 
testing will be organized with future end users of the 
mobile application under test. On the other hand, 
hallway usability testing will be executed by randomly-
chosen people; people that happen to “pass by in the 
hallway” are asked to try using the mobile application 
under test. When feasible, organizing beta testing or 
hallway usability testing can have multiple advantages. 
Obviously, defects might be reported (and fixed), but 
maybe even more importantly, you can anticipate 
possible negative reviews on app stores. App stores 
give a lot of power to the end users; they can make or 
break the success of your app, so it is worth considering 
this at the very beginning of your project.

Infrastructural Needs
When performing mobile application testing, 
infrastructural needs will certainly be different, and 
most will probably be more demanding compared to 
those of more traditional testing.

There is a strong need for controlled test environments 
that cover the enormous range of conditions (device 
type, operating system, connection type, etc.) under 
which mobile applications can be used. However, 
one should be aware of the fact that it is simply 
impossible to create a test environment that covers it 
all. Solutions simulating some of these conditions and 
test automation tools that support recurring tests can 
be brought in, but it will never be possible to build an 
environment that fully covers the defined needs.

Instead of trying to build very complex and very 
expensive test environments that cover as many 
conditions as possible, mobile application testing 
projects can also consider testing in the real world to 
make up for the conditions that cannot be offered in a 
controlled test environment. In-the-wild testing, which 
involves testing in the real world, can be organized 
as a complement to the testing already planned and 
executed in the available test environments. This 
concept will be explained further in the next activity 
section, “Determine Test Approach.”



14

Goals
Determining the test approach is an 
iterative process that is an important 
aspect of creating the test plan. The 
test approach will be at the heart of 
your testing project. At first, a high-level 
approach is created that can be refined 
later as more details concerning the test 
project become available.

The result of this testing activity is the 
project’s test approach matrix, which will 
be documented and maintained in the 
project’s test plan.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of determining a test 
approach for the respective test project that satisfies 
the business requirement for testing of finding the 
most important defects in the object under test as 
soon as possible and at the lowest possible cost by 
focusing on:

• Identifying the scope of the test project

• Identifying test requirements and/or product risks

• Composing the features to test tree (FTT)

• Determining test levels and test types

• Determining priorities

• Determining test depth

• Assigning test techniques

• Creating the test approach matrix

and is achieved by

• Identifying the object under test’s features to test

• Prioritizing the object under test’s features to test

• Determining the quality profile of the object  
under test

• Designing a differentiated test approach

• Distributing the differentiated test approach

1. Test Project Preparation (TPP)
1.2 Determine Test Approach

Test Project Preparation



TPP 1.2.1 Identify Features to Test             
An inventory of project requirements and product risks 
that need to be tested is created. Defined items to test 
are organized in an FTT.                        

TPP 1.2.2 Prioritize Features to Test                          
A relative priority is given to each feature to test that is 
listed in the FTT.               

TPP 1.2.3 Determine Quality Profile                                               
The quality profile is defined when a feature to test can 
be approved. The quality measures for the features 
to test are determined. Standards like ISO 25010, but 
also other commonly used heuristics, can be used as a 
source for this.

TPP 1.2.4 Design Differentiated Test 
Approach                                                         
Based on the priorities and the quality profile, it is 
decided when and how (extensively) the features to 
test will be tested. The test approach is documented 
in the test approach matrix, which summarizes the test 
project’s features to test and their quality measures, 
applicable test levels, and test design techniques.

TPP 1.2.5 Distribute Test Approach                         
The differentiated test approach for the project 
(documented in the test approach matrix) is 
distributed to the involved stakeholders.                

                                    

Steps

TPP 1.2.1

Identify 
Features to  
Test                                                        

Determine 
Quality Profile                                       

Prioritize 
Features to  
Test                                                                    

Design 
Differentiated 
Test Approach                                               

Distribute Test 
Approach                                                         

TPP 1.2.2 TPP 1.2.3 TPP 1.2.4 TPP 1.2.5

During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 15



16

Maturity
The testing activity “Determine Test 
Approach” that satisfies the business 
requirement of finding the most 
important defects in the object under 
test as soon as possible and at the 
lowest possible cost is at:

Initial level
The “Determine Test Approach” testing 
activity is executed in an uncontrolled and 
chaotic way.

• A test approach is not defined for all 
projects. 

• If a test approach is defined, it is done in 
an intuitive way. Business requirements 
and priorities for testing are determined 
based on experience and “gut feeling.”

Starter level 
The test manager takes control of the 
“Determine Test Approach” testing activity 
by creating a test approach matrix. A high-
level risk analysis, mainly based on the 
defined test requirements, is executed.

• The test manager breaks down the 
business requirements into more 
manageable test requirements, or 
features to test, and lists them in an FTT.

• The test manager adds apparent product 
risks to the FTT. Rudimentary risk 
identification techniques (e.g., checklists, 
questionnaires, expert interviews) are 
applied for this.

• The test manager assigns a priority 
number to each feature to test by 
applying a qualitative appreciation of the 
impact and likelihood of the risk level 
associated with that particular feature  
to test.

• The test manager determines the quality 
profile of all features to test using 
a standard set of quality attributes. 
Relevant test types are determined and 
the FTT is organized accordingly.

• The test manager determines the 
different test levels at which the features 
to test will be tested and documents this 
in the test approach matrix. At this level, 
there is no real coordination between the 
different test levels.

• Selection of test design techniques 
to be used is left to the test analyst or 
tester at hand.

• The test manager distributes the 
test approach matrix to the principal 
stakeholders. This can be done as a 
part of or addendum to the project‘s 
test plan.

Experienced level 
The test manager involves the principal 
stakeholders when executing the 
“Determine Test Approach” testing activity. 
More attention is given to product risks 
when creating the test approach matrix.

• Together with the principal stakeholders, 
the test manager breaks down the 
business requirements into more 
manageable test requirements, or 
features to test. All features to test are 
listed in an FTT.

• The test manager organizes facilitated 
workshops (e.g., risk workshops or 
risk brainstorming) with the principal 
stakeholders to identify product risks that 
are also being added to the FTT.

• In separate workshops, the test manager 
and principal stakeholders assign a 
priority number to each feature to test 
by applying a qualitative appreciation of 
the impact and likelihood of the risk level 
associated with that particular feature  
to test.

• Together with the principal stakeholders, 
the test manager determines the quality 
profile of all features to test using a 
standard set of quality attributes (and 
their relative importance level). Relevant 
test types are determined and the FTT is 
organized accordingly. 

Test Project Preparation



STBoX 3.0 Generic Software Testing Process Framework 17

• Together with the principal stakeholders, 
the test manager determines the 
different test levels at which the features 
to test will be tested and documents 
this in the test approach matrix. Gaps 
and overlaps between the different test 
levels are discussed with the principal 
stakeholders.

• Taking into account the priority number 
of the different features to test and 
the importance level of the different 
test types (or quality attributes), the 
test manager determines the test 
depth needed and assigns test design 
techniques accordingly. The test 
design techniques to be applied are 
documented in the test approach matrix.

• The test manager distributes the 
test approach matrix to the principal 
stakeholders. Approval is implicit. 

Master level 
The test manager involves all stakeholders 
when executing the “Determine Test 
Approach” testing activity. There is a clear 
shift toward product risks as the basis 
for the test approach matrix. Detailed, 
cooperative risk identification techniques 
are applied to identify these product risks. 

• Features to test are determined mainly 
based on identified product risks. 

• The test manager applies cooperative 
risk identification techniques (e.g., 
PRISMA, FMEA) to identify product risks 
or features to test in a joint effort with all 
stakeholders involved. All features to test 
are listed in an FTT.

• For reasons of completeness, business 
requirements can be broken into more 
manageable test requirements, which will 
be added to the FTT.

• In separate workshops, the test manager 
and all stakeholders assign a priority 
number to each feature to test by 
applying a qualitative appreciation of the 
impact and likelihood of the risk level 
associated with that particular feature  
to test.

• In the case of high-risk areas, the priority 
number is calculated using quantitative 
risk analysis methods.

• All stakeholders are involved in 
determining the quality profile for all 
features to test using a standard set 
of quality attributes (and their relative 
importance level). Relevant test types 
are determined and the FTT is organized 
accordingly.

• Quality metrics are defined for every 
feature to test, making an objective 
evaluation of respective features to  
test possible.

• Together with the stakeholders, the test 
manager determines the different test 
levels at which the features to test will 
be tested and documents this in the test 
approach matrix. Gaps and overlaps 
between the different test levels are 
discussed with the stakeholders.

• Taking into account the priority number 
and the quality metrics of the different 
features to test, the test manager 
determines the test depth needed 
and assigns test design techniques 
accordingly. The test design techniques 
to be applied are documented in the test 
approach matrix.

• The test manager distributes the test 
approach matrix to all stakeholders. 
Approval is implicit, but can be formally 
organized if needed.



18

Agile Testing  
Add-ons

Agile Test Approach 
In an Agile environment, it is important to determine 
the test approach in a way that reduces the risk of 
introducing regression and ensures the quality of the 
product. Therefore, it is recommended to think about 
the high-level approach at the very beginning of the 
project and to define the detailed test approach during 
the sprint planning meetings, depending on the user 
stories of the sprint backlog.

The purpose of creating the test approach is to 
clarify the test activities, test depth, and the level of 
regression testing to be performed. 

Acceptance Criteria and Definition of Done
Acceptance criteria and definition of done are two 
important aspects that support teams in defining the 
appropriate test approach, and are defined in close 
cooperation with the Agile team(s) and stakeholders. 
Once the definition of done is agreed upon, the team 
should stick to the agreement and make sure that 
“done” really means that the developed features are 
tested and shippable.

Backlog
The product backlog contains the features to test 
and is ordered by the priority that is defined by the 
product owner based on business value, risks, and 
dependencies. From the testing point of view, the 
priorities of the features to test are highly dependent 
on the order of the product backlog items. Testers 
assist in prioritizing the backlog, but testing activities 
are only limited to the sprint backlog.

Agile Testing Quadrants
In Agile projects, different types of testing are 
performed to accomplish different goals. The Agile 
testing quadrants, a matrix originally developed by 
Brian Marick and later refined by Lisa Crispin and Janet 
Gregory, are a good starting point in building the test 
approach.2  The four quadrants are numbered, but they 
should not be looked at sequentially because they do 
not represent any order or timeline of test execution. 

The four quadrants reflect the different reasons for 
Agile testing. On one axis, the matrix is divided into 
tests that support the team and tests that critique 
the product. The quadrants on the left include tests 
that support the team as it develops the product. 
The concept of testing to help the developers is new 
to many testers and is one of the main differences 
between testing in a traditional project and testing 
in an Agile project. The other axis divides them into 
business-facing tests and technology-facing tests.

The Agile testing quadrants are a useful tool to identify 
the tests that need to be considered. On the other 
hand, the test automation pyramid introduced by Mike 
Cohn is a good model to identify the test automation 
strategy. Both models can be combined to design 
the high-level test strategy for a given Agile project. 
Continuous integration and deployment play an 
important role in setting up the test approach.

Keys to Success
• Testing is a whole-team approach and responsibility

• Testing is performed early and often

• Close collaboration with product owner and 
customer 

• Provide and obtain feedback fast and constantly

• Apply Agile practices: 

 – Test-driven development

 – Behavior-driven development

 – Acceptance-test-driven development

 – Exploratory testing

 – Continuous integration and deployment

 – Automated regression testing

 – Refactoring

 – Continuous improvement 

 
 

Test Project Preparation

2 Crispin, Lisa, and Janet Gregory. Agile Testing: A Practical Guide for Testers and Agile Teams.Crawfordsville: Addison-Wesley, 2009



STBoX 3.0 Generic Software Testing Process Framework 19

Mobile Application 
Testing Add-ons

Heuristics for Testing Mobile Applications
When identifying the features to test, specific heuristics 
with regard to testing mobile applications can be used.

One example of such heuristics is given by Jonathan 
Kohl and referred to by the acronym I SLICEDUP FUN:3 

• Inputs: These represent the way you interact and 
control the device

• Store submission: Check store submissions, make sure 
your app is approved to be distributed to the masses, 
regardless of the platform for which you are aiming

• Location: Some can be simulated, but never neglect 
the real world

• Interruptions: Identify all possible interruptions that 
can happen while using your app

• Communication: What happens when your app is 
interrupted for a communication action

• Ergonomic: As apps are intended for tablets and 
smartphones, using apps should be easy and 
comfortable

• Data in- and output: Different text inputs, overflow, 
invalid data, SQL injections

• Usability: Is it easy to use? Is it intuitive? Does it feel 
user friendly?

• Platforms: The variety is extensive given that the 
variety of devices keeps on expanding. Think about 
the lot of distinct manufactures, types of mobile 
devices, operating systems, and different versions 
of these operating systems. Do not forget about 
differences in internal and additional memory 
capacity, different possible screen sizes, built-in 
keyboard, touch pens, etc. Backwards compatibility 
should also be considered

• Functional Properties: There are several settings that 
can be changed on a mobile device. Determine the 
ones that influence your app

• User Scenarios: Determine the users that will be using 
your app and work out user-based scenarios as tests

• Network Conditions: Test for signal strengths and 
variety of operator networks; explore changes  
and transitions

Quality Attributes
When considering the quality profile for mobile 
applications, there’s a number of quality attributes that 
immediately come to mind:

However, the below table is not exhaustive and should 
by no means stop you from exploring other quality 
attributes. Be sure to check quality standards (e.g., ISO 
25010) and/or quality heuristics to verify whether other 
quality attributes are relevant for the mobile application 
you are testing. Finally, make sure to use metrics where 
possible, which help to make selected quality attributes 
measureable.

Test Design Techniques
When creating tests, make sure to apply test design 
techniques that match the quality profile created 
earlier. For example, exploratory testing will help you in 
assessing the functionality and usability.

Emulation and the Cloud
Testing all the devices that are available on the market is 
merely impossible, both from a feasibility and budgetary 
point of view. An emulation tool has several advantages 
because it provides a cost-effective way to test in 
a close-to-real-life environment. These advantages 
add flexibility to performing tests on several devices 
quickly. There is emulation possible which supports test 
automation as well.

Cloud testing is another approach to take. Testing 
on remote live networks and/or simulated hardware 
provides the advantage of having your devices 
available at all times.

Functionality
• Suitability

• Security

Usability

• Understandability 

• Learnability

• Operability

Efficiency
• Time-based

• Resource-based

Maintainability
• Changeability

• Stability

Portability • Adaptability

3 Kohl, Jonathan. Tap Into Mobile Application Testing. Victoria, British Columbia: Leanpub, 2013. https://leanpub.com/testmobileapps



20 Test Project Preparation  

Beta Testing
Beta testing is a testing phase that can be organized 
after a more conventional testing phase is complete. 
The idea is to release a version of the mobile 
application under test to a selected group of identified 
future end users (closed beta testing) or even to the full 
user community (open beta testing), and to ask them to 
try the mobile application under real-world conditions. 

The goal is to discover defects and/or issues in the 
mobile application under test from a user point of view 
that remained undiscovered during testing by the test 
team. It will offer the advantage of being able to fix the 
defects and/or issues before the mobile application 
is officially released to the full user community and 
prevent user dissatisfaction and bad publicity.

Beta testing, however, might not always be an option. It 
is okay to have a new game tested in beta, but having 
future end users test a new app that monitors vital 
functions is probably not an option.

Hallway Testing
Hallway usability testing is another way to involve future 
end users in testing (mainly) usability of the mobile 
application under test.4 However, with hallway testing, 
these future end users are randomly selected from the 
“hallway.” Randomly-chosen individuals are asked to try 
the mobile application under real-world conditions.

Working with randomly-chosen testers doesn’t mean 
that this type of usability testing happens without 
preparation. On the contrary, the success of hallway 
testing depends on good preparation. Proper planning, 
choosing the right location for test execution, proper 
explanation of the purpose (assignment) to the chosen 
individuals, and strict timing are only a few things to 
consider when preparing hallway testing.

Advantages and disadvantages linked to hallway 
testing are more or less alike to those of beta testing.

In-the-Wild Testing
When it is not possible (and this will be the case 
on many occasions) to create a controlled test 
environment, in-the-wild testing comes to the rescue.5 
In-the-wild testing will provide test teams with the 
opportunity to increase test coverage. Tests that 
cannot be executed in the available test environments 
may be executed in the real world. It will allow for 
testing on more and real devices, more versions of 
operating systems, more mobile operating platforms, 
more network providers, more languages, and more 
user profiles.

4 Miller, Jessica. “5 Killer Hallway Usability Testing Tips.” Usability Lab (blog). September 17, 2014. http://usabilitylab.walkme.com/5-killer-hallway-usability-testing-tips/
5 Hand, Richard. “‘In-The-Wild Testing’: The Missing Link in the QA Chain.” Software Test Professionals. January 26, 2012. http://www.softwaretestpro.com/
Item/5422/”In-The-Wild-Testing”-The-Missing-Link-in-the-QA-Chain/Test-and-QA-Software-Test-Professionals-Conference



STBoX 3.0 Generic Software Testing Process Framework 21STBoX 3.0 Generic Software Testing Process Framework 21



22

Goals
“Design Tests” is the activity during 
which the project’s test model is created 
according to the defined test approach. 
The test model is the project’s collection 
of test procedures testing the features to 
test. A test procedure consists of test cases 
(high-level and/or low-level test cases), 
checklists, and in some cases, test scripts 
(automated test cases). The created test 
procedures will also result in test data 
needs, which are defined and created in 
this phase. Traceability toward the features 
to test created earlier is guaranteed.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of designing tests 
for the respective testing project that satisfies 
the business requirement for testing of creating a 
documented and repeatable test suite which covers 
the test project’s features to test according to the 
test project’s test approach by focusing on:

• Creating a test procedure for every feature to test

• Detailing test procedures in test cases, test checklists, 
and/or test scripts

• Defining preconditions, logical steps, and pass/ 
fail criteria

• Linking test procedures to features to test

• Linking test cases, test checklists, and/or test scripts 
to test procedures

• Creating low-level tests cases with required test data

• Creating an execution schedule based on priorities of 
the features to test

and is achieved by

• Creating a test model with test procedures, high-level 
test cases, checklists, and test scripts

• Creating traceability toward the features to test

• Adding test data

• Creating a test execution schedule 

2. Test Build (TB)
2.1 Design Tests

Test Build



STBoX 3.0 Generic Software Testing Process Framework 23

TB 2.1.1 Create a Test Model             
In this step, an assembled set of test procedures, test 
cases, checklists, and test scripts is created.

TB 2.1.1a – Define the Test Procedure 
For each particular feature to test that needs to be 
tested, a test procedure that defines how this goal will 
be accomplished is created. Each test procedure will 
be translated into test cases, test checklists, and/or test 
scripts later on.

TB 2.1.1b – Create Test Cases 
High-level test cases define, on an abstract level, a list 
of actions to be executed in order to execute a test 
procedure. Each high-level test case contains an initial 
input, an action to be performed, and an expected 
outcome. Later on, these high-level test cases will be 
turned into low-level test cases by adding concrete 
test data.

TB 2.1.1c – Create Checklists 
Some test procedures cannot be verified by executing 
test cases, or creating test cases is not efficient. 
In those cases, defining a test checklist is the best 
solution. A test checklist defines a list of control actions 
to test a test procedure.

TB 2.1.1d – Create Test Scripts 
Test scripts are the automated form of manual test cases.

TB 2.1.2 Traceability                       

The “Determine Test Approach” activity generates 
a list of features which need to be tested during the 
project. During the “Design Tests” activity, the features 
to test are translated into test procedures. Traceability 
between test procedures (test cases and checklists) 
and features to test needs to be established. 
Traceability will enable and support progress 
monitoring (test build coverage, test execution 
coverage) and quality reporting.           

TB 2.1.3 Add Test Data                                             
Low-level test cases are created by filling in specific 
test data in the high-level test cases defined earlier. 
This step also ensures the availability of the required 
test data by defining the test data needs and 
generating the required data.

TB 2.1.4 Create Test Execution 
Schedule                                                         
The “Determine Test Approach” testing activity 
generates a prioritized set of features to test in 
an FTT. The priorities listed in this tree define the 
schedule of testing activities during test execution. The 
detailed preparation of this test execution schedule is 
performed in this step by ordering the test procedures.                   

TB 2.1.1

Create a Test 
Model   

Add Test Data                                                                                                          Traceability                                                                                                                   Create Test 
Execution Schedule                                                

TB 2.1.2 TB 2.1.3 TB 2.1.4

Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 23



24

 Maturity
The testing activity “Design Tests” that 
satisfies the business requirement of 
creating a documented and repeatable 
test suite covering the test project’s 
features to test according to the test 
project’s test approach is at:

Initial level 
The “Design Tests” testing activity is 
executed in an uncontrolled and chaotic way.

• Test cases are only created for the most 
important requirements.

• There is no traceability toward the FTT 
defined during the “Determine Test 
Approach” activity.

• Test data is created at the moment it 
is needed, generally during the test 
execution phase, and not in advance 
during this phase.

Starter level 
Test procedures are created for each 
feature to test in every project.

• A high-level qualitative risk assessment is 
performed to define which features to test 
need to be tested.

• The decision to choose a test case or test 
checklist is made by the tester based on 
what seems to be the best solution.

• The decision to automate test 
procedures is made by testers based on 
when it seems to be profitable.

• A test specialist creates test scripts in the 
case that test automation is requested.

• A traceability matrix is created to have 
a clear view of the coverage of all 
requirements and risks.

• Queries are used to search for test data.

• A test execution schedule is created for 
the test procedures. 

Experienced level 
For every project, one test procedure is 
created for each feature to test. 

• Creating a test case or checklist for a test 
condition is based on what seems to be 
the best choice.

• New test scripts are created for new 
functionalities; legacy test scripts need 
only be adapted.

• The traceability matrix gives an overview 
of the requirements and risks covered. 
It also provides a representation of the 
percentages of covered requirements 
and risks, which are displayed in a report.

• Test data can be searched for by queries 
or created when not available.

• Test data is created manually or 
automatically.

• An execution schedule is created for 
the pretest run and the test run. This 
execution schedule not only takes the 
prioritization of the FTT into account, but 
also the logical connection between test 
procedures, the release information, and 
the test environment.

Master level 
For every project, a test procedure is 
created for each feature to test. The 
created test procedures are independent 
from each other.

• The decision to create test cases 
or checklists is made based on the 
knowledge of all of the guidelines.

• A library with test scripts is available 
within the organization. Newly-created 
scripts for new functionalities are added 
to this library.

• The traceability matrix gives an overview 
of the requirements and risks covered. 
It also provides a representation of the 
percentages of covered requirements 
and risks, which are displayed on  
a report. 
 

Test Build



STBoX 3.0 Generic Software Testing Process Framework 25

• Test data can be requested from a 
specialized team.

• An execution schedule is created for 
the pretest run and the test run. This 
execution schedule not only takes the 
prioritization of the FTT into account, but 
also the logical connection between test 
procedures, the release information, and 
the test environment.

• The pretest run is automated.

Agile Testing  
Add-ons

Level of Design
In an Agile environment, test design is often replaced 
by high-level test cases, checklists, or even by 
exploratory testing. 

The level of detail depends on the decision that the 
team has made together with the product owner and 
Scrum master. This decision can be based on:

• Available time for testing in the iteration 

• Maturity of the testers 

• Level of detail of the user stories 

• Content of the definition of done 

Exploratory Testing
In Agile projects, Lean principles are often applied in 
order to reduce and eliminate waste. This is one of the 
reasons why test documentation is not as extensive as in 
a Waterfall project. The focus is more on working software 
than exhaustive documentation. There is more time spent 
on creating automated tests than designing manual test 
cases that are only executed once during sprints.

Testing in an exploratory way is in fact simultaneous 
test design, test execution, and learning about the 
product. A common misconception is that these kinds 
of tests are not manageable or accountable. When 
using test charters (an up-front, defined, specific test 
mission), time-boxed test sessions, and debriefs, this 
can be a very powerful test approach, generating 
precious and quick feedback.

Test Basis
The creation of test cases is one of the daily test 
activities during the sprint. However, this task is limited 
to the user stories in the scope of the sprint that are 
committed by the team. Each iteration is focused on a 
few stories, taking the priority from the product backlog 
into consideration. All other product backlog items are 
out of scope.

A good user story focuses on the value a user gains 
from the system and uses the “INVEST” model6:

• Independent

• Negotiable

• Valuable

• Estimable

• Small

• Testable

At the beginning of the sprint, the tester often 
identifies the high-level test cases based on the defined 
acceptance criteria. A good practice is to do this before 
the user story is implemented to clarify the scope with 
the product owner and to define the correct test cases.

Practices
Depending on the maturity level of the team, one or 
more of the following practices can be applied by the 
Agile team:

• Test-driven development

• Acceptance-test-driven development 

• Behavior-driven development 

• Story-test-driven development 

• Specification by example

Traceability
Both detailed and high-level test cases can be written 
down in a tool, ranging from mind maps, to simple 
Excel files, to a test management tool. The link 
between features and test cases is not necessarily 
present in Agile projects, and depends on the tool in 
place to design the tests and the definition of done.

 
 
 

6 Wake, William. “INVEST in Good Stories, and Smart Tasks.” XP123 Exploring Extreme Programming (blog). August 17, 2003. xp123.com/articles/invest-in-good-
stories-and-smart-tasks/



26

Mobile App Checklist

Installation

• Application must be installed via a computer link without errors occurring

• Application must be installed via a download link without errors occurring

• Application opening time is below 20 seconds

• Application settings opening time is below three seconds

• Application continues installing process even after the screen of mobile device has 
been locked

• Application must be uninstalled without errors occurring

Compatibility

• Application runs on different OSs

• Application runs on different devices

• Application runs with different languages

• Application runs with different time/date settings

• Application functions properly even when other applications from same author are 
installed on the same mobile device

For tests that are only executed once and not 
automated, it does not make any sense to maintain 
traceability. In fact, in Agile projects, all stories 
accepted by the product owner have been tested and 
met the definition of done. So, it is obvious that all 
features were tested before delivery.

On the other hand, for automated tests, it is useful to 
know which user stories are covered by test automation 
as these tests are constantly running. 

Mobile Application 
Testing Add-ons

Resources
Resources such as those below might not be self-
evident or could even be unavailable: 

• SIM cards

• SD cards

• Wi-Fi network

• Mobile devices (tablets, smartphones, etc.)

• Emulators

• Extra software of peripherals needed for your tests

When designing mobile application tests, you’ll need 
to adapt to the choices made in the test approach and 
the resources made available in the test plan. Some 
tests should not be designed as it will not be possible 
to execute them anyway due to unavailability of the 
needed resources.

Mobile-specific Test Cases
Mobile devices are portable, which will result in 
location changes, network changes, and screen 
orientation changes while applications are being 
used. Mobile devices are also often controlled by a 
touchscreen or voice control. All of these factors will 
result in mobile-specific test cases. 

Below, you can find a list that contains specific tests for 
mobile applications. Though this list is not exhaustive 
and cannot guarantee any test coverage completeness, 
it will give you a good understanding of what makes 
mobile test design unique. It is constructed around five 
main test categories: 

• Installation

• Compatibility

• GUI (User Interface)

• Network

• Interrupts

Test Build



STBoX 3.0 Generic Software Testing Process Framework 27

GUI

• There should be no overlapping images or buttons

• The user interface should be user-friendly and easy to use

• Changing from landscape to portrait orientation (rotating the device) should not affect 
the layout or cause any errors

• Text should not be cut off/overlapped by images, borders, or buttons

• All GUI tests should be performed on devices with different native screen sizes (DPI and  
screen size)

• Once the app is installed, the app icon in the app drawer should be checked/verified to 
see if it meets expectations

• All buttons integrated in the application should have a function/reaction after being pressed

• All buttons should execute the function they describe after being pressed

• Navigation within the application should work with both hard buttons (on the device) 
and soft buttons (in the application)

• Pressing the back button (hard or soft) should not close the application without a 
confirmation message

• Navigating to a new functionality should not take more than five user actions

Network

• Application runs with Wi-Fi connection

• Application runs with cellular connection (3G/4G)

• No errors should occur with weak or lost Wi-Fi connection during use of the application

• No errors should occur with weak or lost cellular connection (3G/4G) during use of  
the application

• No errors should occur when the device transitions from cellular to Wi-Fi connection  
(or the other way around) during use of the application

• No errors should occur when the device loses GPS localization

• No errors with Bluetooth transfer and connections

• Application closes connections correctly

Interrupts

• Incoming phone calls, video calls, or text messages should not cause any errors

• Launching and pausing a music/movie player should not cause any errors

• Launching and pausing the camera should not cause any errors

• Launching and pausing other applications should not cause any errors

• Plug or unplug USB should not cause any errors

• Changing the USB connection should not cause any errors

• Lock and unlock should not cause any errors

• Application should have no memory leaks or battery drain problems

• In case the application emits sound, this sound should not be heard when interrupted by  
a phone call or another app that emits sound

• Minimizing the application to status bar and launching it again should not cause any errors

The list is also a good starting point for creating your own checklist dedicated to your mobile application’s specific 
needs. Simply expand the list with your own mobile-specific test cases and/or consolidate them with other 
existing checklists.



28

Goals
Setting up a test environment for your 
testing project is performed in order to 
fulfill the test environment requirements 
and to make sure that all necessary test 
data is available to verify your testing 
project in each test level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of setting up test 
environment(s) for the respective testing project 
that satisfies the business requirement for testing of 
having controlled test environment(s) available, 
guaranteeing full support and unhindered execution 
of the test project’s test execution schedule by 
focusing on:

• Identification and installation of hardware and 
software components (computer, network, 
middleware, operating system, etc.) of the test 
environment(s), supporting the test project’s test 
approach

• Identification and installation of process components 
(planning, scheduling, backup, restore, database 
management, authorization, security, release 
management, etc.) of the test environment(s) 
supporting the test project’s test approach

• Identification and installation of development tools 
and test tools supporting the test project’s test 
approach

• Installation of the correct version of the respective 
test object and relevant satellite systems and 
interfaces in the test environment(s)

• Artificially creating and/or copying from production 
the (initial) test data as described in the test project’s 
test design

and is achieved by

• Determining the test environment requirements

• Setting up the test environment(s)

• Setting up the test tools

• Installing the test object

• Setting up test data

2. Test Build (TB)
2.2 Set Up Test Environment

Test Build



During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 29

TB 2.2.1 Determine Test Environment 
Requirements              
An inventory of test environment requirements is 
created for the test project. The possible limitations 
are listed as well.

TB 2.2.2 Set Up Test Environment                       

The test environment(s) is (are) installed. During 
execution of the planned tests, the environment(s) will 
be maintained.

TB 2.2.3 Set Up Test Tools                                               
The necessary test tools are installed and maintained. 

TB 2.2.4 Install Test Object                                          
The test object is installed and maintained during the 
different test levels.                

TB 2.2.5 Set Up Test Data                                          
The necessary test data is determined. The test data 
is artificially created and directly entered into the test 
environment(s) and/or copied from the production 
environment (in this case, measures to protect data 
privacy should be considered). 

TB 2.2.1

Determine Test 
Environment 
Requirements 

Set Up Test 
Tools  

Set Up Test 
Environment

Install Test 
Object  

Set Up Test 
Data  

TB 2.2.2 TB 2.2.3 TB 2.2.4 TB 2.2.5

Steps



30 Test Build

Maturity
The testing activity “Set Up Test 
Environment” that satisfies the business 
requirement of having the controlled test 
environment(s) available, guaranteeing full 
support and unhindered execution of the 
test project’s test execution schedule is at:

Initial level
The testing activity is executed in an 
uncontrolled and chaotic way.

• The activity is not organized for all 
projects.

• If the activity is executed, it is executed in 
a chaotic and ad hoc manner.

Starter level
The test manager takes control of the 
“Set Up Test Environment” activity by 
listing a set of requirements for the 
test environment(s) and formalizing an 
approval by the principal stakeholders 
and environment Single Point of Contact 
(SPOC).

• The test manager lists requirements for 
the test environment(s) (test environment, 
test tool, test object).

• The principal stakeholders and test 
environment SPOC approve test 
environment requirements.

• Respective suppliers provide the 
requested test environment(s), test tools, 
and test object.

• Respective suppliers informally inform 
the test manager when the test 
environment(s), test tools, and test object 
are ready.

• The project team (development/test) 
maintains the test environment(s) and 
test tools.

• Respective suppliers maintain the  
test object.

• Test data is determined for low-level  
test cases.

• Test data is supplied (newly created or 
copied from production) by the project 
team (development/test).

Experienced level
The test manager involves the principal 
stakeholders when executing the “Set Up 
Test Environment” activity. Different test 
environments per test level are available 
(Development, Testing, Acceptance, and 
Production (DTAP) model).

• For each project, the test approach 
is mapped on the DTAP model (see 
“Determine Test Approach” activity).

• The test manager and principal 
stakeholders list requirements for the test 
environment(s) (test environment, test 
tools, test object) per test level.

• The principal stakeholders and test 
environment SPOC approve test 
environment requirements.

• Respective suppliers provide requested 
the test environment(s), test tools, and 
test object.

• Respective suppliers formally inform 
the test manager when the test 
environment(s), test tools, and test object 
are ready.

• Limitations of the test environment(s) are 
being traced back to the test approach 
and communicated to the principal 
stakeholders.

• The test manager adapts the test 
approach and test schedule according to 
actual state of test environment(s), test 
tools, and test object.

• Respective suppliers maintain the  
test environment(s), test tools, and  
test object.

• Test data is determined for low-level  
test cases.

• Test data is supplied (newly created, 
selected and copied from test data 
repository, or selected and copied 
from production) by the project team 
(development/test).



STBoX 3.0 Generic Software Testing Process Framework 31

Master level
The test manager involves all stakeholders 
when executing the “Set Up Test 
Environment” activity. There’s a clear 
process for determining and requesting 
test environment requirements with 
clear involvement of all involved parties, 
i.e., test manager, all stakeholders, and 
environment SPOC.

• For each project, the test approach 
is mapped on the DTAP model (see 
“Determine Test Approach” activity).

• The test manager and all stakeholders list 
requirements for the test environment(s) 
(test environment, test tools, test object, 
test data) per test level through the 
request form.

• All stakeholders and the test environment 
SPOC approve the test environment 
requirements request form.

• Respective suppliers provide the 
requested test environment(s), test 
tools, test object, and test data (newly 
created, selected and copied from test 
data repository, or selected, copied and 
scrambled from production).

• Respective suppliers formally inform 
the test manager when the test 
environment(s), test tools, and test object 
are ready through the delivery form.

• Respective suppliers communicate the 
test environment(s), test tools, and test 
data gaps through the delivery form.

• Respective suppliers formally 
communicate possible flaws of the test 
object through release notes.

• Limitations of the test environment(s) 
are being traced back to the test 
approach and communicated to all of the 
stakeholders.

• The test manager adapts the test 
approach and test schedule according to 
actual state of test environment(s), test 
tools, test object, and test data.

• Respective suppliers maintain the test 
environment(s), test tools, test object, 
and test data.

Agile Testing  
Add-ons

Selection and Set Up of Tools
Selection of the tools needed is a team responsibility. 
During the initial planning, often defined as sprint 
zero, the whole team gathers the most important 
requirements for the tooling to be used. During the 
development life cycle, the team also continuously looks 
for improvements that might result in the introduction 
and usage of new tools. From a purely testing point of 
view, the defined test approach and the Agile testing 
quadrants will impact the final selection of test tools and 
test environment to be used in the project. In addition 
to classical test tools that support test management, 
test case management, defect management, etc., 
Agile projects in particular also require tools to support 
continuous integration and deployment. 

Testers will assist in setting up the selected tools and 
will also be involved in setting up the continuous 
integration framework to follow up on quality of code 
and to monitor unit tests or other automated test 
scripts. The challenge for Agile teams is figuring out 
how to align testing with the speed of development 
and delivery without loss of quality. Continuous testing 
is becoming more important, but doesn’t happen 
without having automation in place. 

Test Data
During the creation of the product backlog, testers can 
already define the test data types and check how easily 
the test data can be obtained. If test data needs a long 
preparation time or requires extensive manipulation, 
testers can start the test data setup process during 
the early stages of the project in order to have all data 
ready when the team starts developing the stories. 

It also might be useful to think about a mechanism 
to automatically generate test data. This way, test 
data can be easily re-created several times during the 
ongoing sprint, or even future sprints.

Supporting Tools
One of the main principles of an Agile software 
development process is the importance of 
communication between all people involved in the 



32 Test Build

project. The main goal of communication is to share 
information. The most efficient and effective method 
of conveying information to and within a development 
team is face-to-face conversation. In the case that 
the whole team is co-located, the team should avoid 
using unnecessary tools for communication. However, 
when this is not the case, it is important to think about 
different tools to facilitate team communication, taking 
the organizational structure into account.

A tool that can support planning and tracking of the 
progress of user stories that have business value to 
customers is also very important for Agile teams. 
There are many tools on the market to plan, track, and 
manage Agile projects, iterations, user stories, and 
tasks. Virtual Scrum/task boards are typical examples of 
such tools. 

It’s up to the team to decide whether such a planning 
tool adds value, or if the user stories and tasks can be 
tracked with post-its on a whiteboard alone. Co-located 
teams may prefer working with a whiteboard instead of 
using a virtual task board. On the other hand, a virtual 
task board is a powerful tool to support distributed 
teams in order to ensure all team members are always 
up to date.

Keep in mind that tools should never replace the 
benefits achieved from daily stand-up meetings, 
retrospectives, or close cooperation with stakeholders.

Test Object
The test object is installed as soon as a testable piece 
of code is available in order to have short feedback 
loops. Continuous integration and deployment are 
concepts supporting the testers and other team 
members in rapidly deploying every change to a test, 
acceptance, or production environment.

Mobile Application 
Testing Add-ons

Self-managed Test Environment
One of the characteristics of a mobile test environment 
is that part of it is often managed by the testers 
themselves. The mobile devices such as smartphones 
and tablets can be managed by the testers in the 
following ways:

• Firmware/operating systems are flashed on the 
devices by the testers

• Software is installed on the devices by the testers

• Sim cards, SD cards, cables, chargers, etc., are 
managed by the testers

• Testers keep track of what software is installed on 
which devices

• Device emulators and credentials are managed by 
the testers

• Device cloud credentials and access rights are 
managed by the testers

Please note that flashing firmware on mobile devices 
is not without risk. When done incorrectly, upgrading 
or downgrading a mobile device’s operating system 
might result in irreversible damage to the device. 
Dedicated flashing tools should be used for this and 
one should take greatest care in selecting a proven 
(custom) ROM to install (e.g., Cyanogenmod). So, 
testers downgrading and upgrading the devices’ 
software should be trained before executing these 
actions and should not proceed lightly.  
 



STBoX 3.0 Generic Software Testing Process Framework 33

Hardware or Virtualization
Having every kind of device you want to test physically 
available is not feasible for every project. The purchase 
and maintenance of a hardware portfolio should not 
be underestimated. Mobile devices are also rapidly 
evolving, and thus, a device can become “outdated” 
after a limited period of time. 

Virtualization through third-party-managed device 
clouds or through either third-party or self-managed 
emulators is a very viable alternative. The main target 
devices can be purchased and self-maintained while 
extra devices and older OS versions can be tested on 
the device clouds or emulators. 

Managing your devices and other hardware such as 
SIM cards, SD cards, cables, chargers, etc., should also 
not be underestimated. All of these items are small, 
expensive, and easy to lose. Keeping a who-has-what 
list and keeping it updated should be considered best 
practice. A list with all of the info on the devices and 
what OS version is currently installed can also be very 
time saving. 

Authorizations
While you may be perfectly aware of what test 
environment you want, you might not always get what 
you want. Company policies may interfere with the 
setup of your test environment in many different ways:

• Authorization to manage credentials and access 
rights for devices, emulators, and cloud services

• Authorization to leave the building for field testing

• Authorization to connect to the company’s  
wireless network

• Authorization and budget to purchase mobile 
devices, SD cards, SIM cards, etc.

• Authorization to use a company car to perform  
road tests

Always check the respective company policies and/or 
with corresponding management to determine whether 
you have the needed authorization and budget to 
set up the test environment as you would like. If not, 
negotiate whether you can acquire authorizations on a 
temporary basis and/or part of the budget required.



34

Goals
During the “Verify Test Environment” 
activity, it is verified that the test 
environment(s) is (are) correctly set 
up according to the test environment 
requirements list and that the test object 
is correctly installed and ready for the next 
phase of testing.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of verifying the test 
environment(s) for the respective testing project that 
satisfies the business requirement for testing of making 
sure that the test environment(s) is (are) correctly 
set up and the test object is correctly installed 
in the test environment and preventing waste of 
testing effort by not starting test execution in a test 
environment that is not compliant with the defined 
test environment requirements by focusing on:

• Verification of availability, quality, and stability of the 
test environment(s), test tools, test object, and test 
data through static checking of the test environment 
requirements list

• Verification of availability, quality, and stability of the 
test environment(s), test tools, test object, and test 
data through dynamic execution of selected test 
cases (intake test)

• Summarizing the results of the static check and the 
intake test in order to evaluate the availability, quality, 
and stability of the test environment(s), test tools, test 
object, and the test data

• Providing advice to the stakeholders regarding 
starting execution of the next test iteration, test 
run, test level, etc., based on the results of the static 
check and the intake test

and is achieved by

• Performing a static check of the test environment(s) 

• Performing an intake test of the test environment(s) 
and the test object

3. Test Execution (TE)
3.1 Verify Test Environment

Test Execution



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 35

During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

TE 3.1.2TE 3.1.1

TE 3.1.1 Perform Static Check                                      
Verification of the quality of the test environment(s) 
is performed through static checking of the 
test environment requirements list. This way, IT/
Infrastructure can check whether the deployments are 
as expected.

 

TE 3.1.2 Perform Intake Test                                                                                                                          

Verification of the quality and stability of the test 
environment(s) and the test object is performed 
through dynamic test execution of the prepared 
pretest execution schedule. The test team will be 
responsible for this step.    

Perform 
Intake Test                                                                                                                                             
                                                                        

Perform Static  
Check                                                                                                



36 Test Execution

Maturity
The testing activity “Verify Test 
Environment” that satisfies the business 
requirement of making sure that the test 
environment(s) is (are) correctly set up 
and the test object is correctly installed 
in the test environment and preventing 
waste of testing effort by not starting 
test execution in a test environment that 
is not compliant with the defined test 
environment requirements is at:

Initial level
The “Verify Test Environment” testing 
activity is executed in an uncontrolled and 
chaotic way.

• The activity is not organized for all 
projects.

• If the activity is executed, it is executed in 
a chaotic and ad hoc manner.

Starter level
The test engineer or test specialist takes 
control of the “Verify Test Environment” 
testing activity and uses the test 
environment requirements list to verify 
the test environment(s). The test engineer 
or test specialist also executes a dynamic 
test(s) to verify the test environment(s) and 
test object, but it is not a dedicated test, 
rather it is a subset of the test cases that 
are to be executed on this test object.

• For each project, the test environment 
requirements list is used as a (static) 
checklist to check the availability and 
quality of the test environment(s) and test 
object as required.

• Dynamic test execution is performed to 
verify the quality and stability of the test 
environment(s) and the test object as 
required.

• Improvised manual test cases or, in the 
best case, a small selection of prepared 
test cases are run.

• Actual results and expected results of the 
dynamic test execution are compared.

• When expected and actual results do not 
match, defects are logged.

Experienced level
The test engineer or test specialist takes 
control of the “Verify Test Environment” 
testing activity and uses the test 
environment requirements list to verify 
the test environment(s). The test engineer 
or test specialist also executes the 
planned dynamic test(s) to verify the test 
environment(s) and test object. This test is 
a dedicated test for this purpose and can 
be automated.

• For each project, the test environment 
requirements list is used as a (static) 
checklist to check the availability and 
quality of the test environment(s), test 
tools, test object, and test data as 
required.

• Dynamic test execution of the prepared 
pretest execution schedule (see “Design 
Tests” activity) is performed to verify 
the quality and stability of the test 
environment(s) and the test object  
as required.

• Test cases (preferably automated), 
as planned in the pretest execution 
schedule, are run.

• Actual results and expected results  
are compared.

• When expected and actual results do not 
match, defects are logged.

Master level
The test engineer or test specialist takes 
control of “Verify Test Environment” 
testing activity and uses the test 
environment requirements list to verify 
the test environment(s). The test engineer 
or test specialist also executes the 
planned dynamic test(s) to verify the test 
environment(s) and test object. This test is 
a dedicated test for this purpose and  
is automated.



STBoX 3.0 Generic Software Testing Process Framework 37

• For each project, the test environment 
requirements list is used as a (static) 
checklist to check the availability and 
quality of the test environment(s), test 
tools, test object, and test data  
as required.

• Dynamic test execution of the prepared 
pretest execution schedule (see “Design 
Tests” activity) is performed to verify 
the quality and stability of the test 
environment(s) and the test object  
as required.

• Automated test cases, as planned in the 
pretest execution schedule, are run.

• Actual results and expected results  
are compared.

• When expected and actual results do not 
match, defects are logged.

Agile Testing  
Add-ons

Sprint-ready Checklist
During sprint zero, when the initial planning is done, 
a sprint-ready checklist is created, consisting of a set 
of tasks that must be completed before a sprint can 
start and run smoothly. If there is major incompletion, 
it would be risky to start a sprint as it will experience 
obstacles, delays, and impediments. Therefore, at the 
end of sprint zero, checks are performed to prove that 
the environment is available according to the specified 
requirements.

Sanity Checks
Short feedback loops are the strength of working in an 
Agile environment. This requires continuous integration 
as well as deployment. To ensure that during iterative 
development the test environment is ready to be used, 
automated test scripts are often written to replace 
manual sanity checks. 

Test-driven development and acceptance-test-driven 
development are some of the key Agile principles used 
to validate that the test object is completely installed 
and the developed features are correctly deployed.

Mobile Application 
Testing Add-ons

Self-managed Test Environment
In mobile application testing projects, part of the 
test environment is often self-managed by the test 
team. As a result, at least for the part that they are 
managing themselves, test engineers or test specialists 
will be responsible for checking the state of the test 
environment. The static check of this part of the test 
environment cannot be delegated to others. 

Keeping track of (the requirements of) the many 
devices, hardware, and software, therefore, is of 
utmost importance. Some measures that can help 
attain this are: 

• Maintain an inventory of all devices, hardware,  
and software

• Keep track of physical location of the devices ("who-
has-what"list)

• Use the devices strictly for testing

• Set up a mechanism that will automatically reset the 
devices on a regular basis (i.e., every night, week, etc.)

Resetting Devices
Resetting guidelines are recommended when several 
testers are working with a shared portfolio of test 
devices. For testing consistency and to ensure that 
every tester can start his tests in the same conditions as 
any other tester, it is recommended to regularly reset 
the test devices. This can be done in many different 
ways: before tests, after tests, on planned intervals, 
or even automatically when you are working with 
emulators or cloud devices. 

Being able to start in a “clean” environment might 
prevent errors that would be caused by previous 
tests that were performed. Do note that not all 
tests require a reset; some tests actually require the 
application to already be installed and used for a 
certain period of time. 

When the devices are regularly reset, the device 
will have to be set up again, test data has to be re-
imported, and the application will have to be installed 
again every time. 



38 Test Execution

Because resetting before testing is good for quality and 
consistency but does take some time, you will have to 
assess the frequency of resetting (per test/daily/weekly, 
etc.) to make sure the process is beneficial for you.

Service Level Agreements (SLAs) and Key 
Performance Indicators (KPIs)
When the test environment is managed by external 
parties, make sure that SLAs and/or KPIs addressing 
the availability and verification of the test environment 
are part of the agreement made with the supplier.

Intake Test
Dynamic tests executed for purposes of verification 
of the test environment will have to be executed on 
a regular basis, and probably also on many different 
devices (simulations, physical devices, or devices in the 
cloud). Hence, these tests are the ideal candidates for 
test automation. The following points should be taken 
into consideration when selecting the test cases for the 
intake test:

• Try to minimize the amount of test cases in the  
test set

• Create the test cases in the test set to be as generic 
as possible so they can be reused on multiple  
test devices

• Work with parameters to easily adapt the test set for 
different devices with different features

• Limit the number of devices that will actually be 
tested to a small group of devices representing all 
devices that are part of the scope

 

 

 



STBoX 3.0 Generic Software Testing Process Framework 39STBoX 3.0 Generic Software Testing Process Framework 39



40

Goals
The testing activity “Execute Tests” 
involves executing tests to verify that 
the test object meets the requirements, 
making use of a tool for executing tests, 
logging defects, and reporting on test 
execution progress and found anomalies.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of executing the 
designed tests for the respective testing project 
that satisfies the business requirement for testing 
of controlled test execution according to the 
test project’s test execution schedule and formal 
reporting of observed defects by focusing on:

• Execution of manual test cases according to the test 
project’s test execution schedule

• Execution of automated test scripts according to the 
test project’s test execution schedule

• Verifying checklists according to the test project’s test 
execution schedule

• Logging test execution details in test execution log

• Comparing actual test results with expected results

• Analyzing discrepancies between actual results and 
expected results

• Reporting defects in the case of confirmed 
discrepancies between actual results and expected 
results, and adding their severity

and is achieved by

• Executing the test project’s test execution schedule

• Creating detailed test execution log

• Reporting defects in the case of anomalies

3. Test Execution (TE)
3.2 Execute Tests

Test Execution



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 41

TE 3.2.3TE 3.2.2TE 3.2.1

Report Defects                                                                                            Create Test 
Execution Log                                                                        

Execute Test 
Cases                                                                                      

TE 3.2.1 Execute Test Cases                                                                                                   
Execution of the designed test cases to verify and 
validate that the test object meets the requirement 
specifications. An appropriate test automation tool will 
be required when considering automating part of test 
execution.

TE 3.2.2 Create Test Execution Log                                                                                               
Reporting on necessary information regarding the 
executed tests. This can also be done in a semi-
automatic or automatic way using an appropriate test 
management tool.         

TE 3.2.3 Report Defects                                                                                                                                         
The possible discrepancies found between actual and 
expected results will be reported during this step. 
A defect management tool can be used to support 
this step. Reporting defects should not be done until 
the defect has been carefully checked to determine 
whether it is a real defect.



42 Test Execution

Maturity
The testing activity “Execute Tests” 
that satisfies the business requirement 
of controlled test execution according 
to the test project’s test execution 
schedule and formal reporting of 
observed defects is at:

Initial level
The “Execute Tests” testing activity is 
executed in an uncontrolled and  
chaotic way.

• Some tests are executed.

• A test execution log is not always created.

Starter level
For every test project, the “Execute 
Tests” testing activity is performed to 
verify that the test object meets the 
requirements.

• The test cases/scripts/checklists are 
executed based on the test procedure 
and the test schedule.

• The test execution log, with relevant 
information (tester, start time, end 
time, result), is created manually during 
test execution by using a simple word 
processor or spreadsheet.

• Discrepancies between the expected 
results and the actual results are logged 
in a tracking tool.

Experienced level
For every test project, the “Execute Tests” 
testing activity is performed to verify that 
the test object meets the requirements. 
Defects are analyzed and priorities are 
determined on a project level. 

• The test cases/scripts/checklists are 
executed based on the test procedure 
and the test schedule.

• The test execution log, with relevant 
information (tester, start time, end 
time, result), is created and maintained 
during test execution by using some 
sort of test management tool.

• The discrepancies between the expected 
results and the actual results are analyzed 
to establish their root cause.

• The severity of the defects is determined.

• Defects and/or remarks are reported in 
the defect template. The defect template 
is determined on the project level.

Master level
For every test project, the “Execute 
Tests” testing activity is performed to 
verify that the test object meets the 
requirements, defects are analyzed, 
and priorities are determined on 
company level.

• The test cases/scripts/checklists are 
executed based on the test procedure 
and the test schedule.

• The test execution log, with relevant 
information (tester, start time, end 
time, result), is created and maintained 
during test execution by using a test 
management tool.

• The discrepancies between the 
expected results and the actual 
results are analyzed to establish their 
root cause.

• The severity of the defects is determined. 

• Defects and/or remarks are reported 
in the defect template. The defect 
template is determined on the 
company level.



STBoX 3.0 Generic Software Testing Process Framework 43

Agile Testing  
Add-ons

Agile Testing Quadrants
Test execution involves carrying out the manual or 
automated test cases that have been created, or in 
case of exploratory testing, test cases that are designed 
on the spot.

During an iteration, different types of testing are 
performed to accomplish different goals. These 
different types of testing are listed in the Agile testing 
quadrants, a matrix originally created by Brian Marick 
and later refined by Lisa Crispin and Janet Gregory.7 

The four quadrants reflect the different aspects of 
testing. On one axis, the matrix divides tests that 
support the team and tests that critique the product. 
The other axis divides them into business-facing tests 
and technology-facing tests.

Technology-facing Tests Supporting the Team
The tests in quadrant 1 function as a sort of guide 
for development, and are often part of test-driven 

development (TDD). The purpose of these tests is to 
verify that the code carries out what the business has 
described on a functional level. They are not intended 
for any form of customer use. They are related to the 
“internal quality” of the software. 

Unit and component tests are a big part of this 
quadrant, but it is important to remember that they 
need a solid basis of TDD and a continuous integration 
process in place. Unit and component testing should 
result in a higher quality of code handed over which, in 
turn, will improve morale for all team members.

Business-facing Tests Supporting the Team
The purpose of quadrant 2 tests is to drive 
development on a higher level with business-facing 
tests. These tests are created to ensure the high-level 
system behavior responds in the way the business 
user intended. The tests in this quadrant are mainly 
confirmatory tests and their main purpose is to 
provide early feedback. Quadrant 2 tests ensure 
“external quality.”

Key to successfully defining business-facing tests is 
making sure that they express requirements based 
on examples in a language and format that both the 

Automated and Manual
• Functional Testing
• Examples
• Story Test
• Prototypes
• Simulations

Automated 
• Unit Tests
• Component Tests

Manual
• Exploratory Testing
• Scenarios
• Usability Testing
• UAT
• Alpha/Beta

Tools
• Performance and 

Load Testing
• Security Testing
• “itility” Testing

2
Quadrant 

Quadrant 

1
Quadrant

4

3
Quadrant 

Business Facing

C
ritiq

ue P
ro

ject

Su
p

p
o

rt
in

g
 t

he
 T

ea
m

Technology Facing
7 Crispin, Lisa, and Janet Gregory. Agile Testing: A Practical Guide for Testers and Agile Teams.Crawfordsville: Addison-Wesley, 2009



44 Test Execution

customer and development teams can understand. 
Usually, user stories are at the heart of these 
requirements. User stories are written by the business 
experts and, at first, usually do not contain a lot of 
detail. It is a starting point for an ongoing conversation 
between business experts and the development team. 
Testers can help elicit examples and context for each 
story. The combination of story, conversation, context, 
and examples finally makes up the requirement. 

Quadrant 2 tests are written before coding is 
started. This is also known as acceptance-test-driven 
development (ATDD). Testers write tests in close 
cooperation with developers and the business as a first 
step in design and development because the tests help 
the developers understand what to write. The tests 
are typically automated, using automated acceptance 
testing frameworks like Fitnesse, Cucumber, Selenium, 
or other test tools.

Typical tests in this quadrant are examples, functional 
tests, story tests, prototypes, mock-ups, and 
simulations.

Business-facing Tests that Critique  
the Application
Quadrant 3 encompasses tests that critique the 
software, but do so in such a way that executing these 
tests will review the software from a user point of view 
and consider ways to further improve the product. Even 
business experts can overlook features and elements 
that real users expect, or express needs in an incorrect 
way. Therefore, the outcome of quadrant 3 tests will 
often guide the creation of new or additional stories or 
requirements. In general, these tests give confidence to 
the team that they are delivering working software, and 
that both functional and non-functional criteria have 
been met.

Typical quadrant 3 tests are exploratory testing, 
user scenario testing, alpha and beta testing, user 
acceptance testing, and usability testing. All of these 
tests explore the application under test in a way similar 
to how an end user would use the product. As a result, 
application failures under normal consumer use will 
be exposed and not-yet-identified requirements will 
surface. Depending on the particular test, actual end 
users can and will be involved during test execution.  

Tests in quadrant 3 are usually executed manually. By 
automating quadrant 1 and quadrant 2 tests to the 
highest level possible, resources will be available for 
the manual text execution in quadrant 3.

Technology-facing Tests that Critique  
the Application
Quadrant 4 tests are concentrated more on non-
functional requirements. Since most of the tests 
performed in this quadrant can only be executed by a 
tool or application experts, this quadrant is supported 
more by the technology than by the business, and 
its tests are often executed by resources with the 
necessary skills and tool knowledge. 

Because testers often focus on testing the functionality 
and pay less attention to reliability or performance, 
explicitly adding these to different stories might be 
a good idea. Before executing these kinds of tests, 
however, the team should identify the expectations 
so they are able to measure unsatisfactory behavior. 
Working in close cooperation with the customer may 
provide clarity in case of any doubts.

Typical quadrant 4 tests are performance and load 
testing, security testing, and installability testing. 

Agile Testing Pyramid
Automated test execution is a must in an Agile 
development process, and is key to success in Agile 
testing. Test automation enables testers to focus on 
the newly-developed stories rather than having to 
manually execute regression tests over and over again 
to prove stability. Without adequate automation, 
there’s not enough time for exploratory testing in an 
Agile iteration. The need for automated testing almost 
becomes essential to generate the velocity needed to 
ship working software in short iterations. 

The Agile testing pyramid, a concept developed by 
Mike Cohn, is often used by Agile teams to guide test 
automation efforts.8 The cost of ownership increases 
as you move up through the different layers of the test 
automation pyramid: the cost of creating and running 
automated high-level, end-to-end tests is considerably 
higher than creating and running automated low-level 
unit tests. However, when moving up through the 
different layers of the pyramid, business relevance and 
coverage also increases.

8 Cohn, Mike. Succeeding with Agile: Software Development Using Scrum. Ann Arbor: Addison-Wesley, 2009



STBoX 3.0 Generic Software Testing Process Framework 45

GUI Testing

• E2E Testing

• Scenario Testing

• Smoke Testing

Integration Testing

• Functional Testing

• E2E Behavior

• Story Testing

• API Testing

• Component  

Testing

Unit Testing

• Smallest piece of  
executable code

Total Cost of 
Ownership

The three layers of test automation reflect this balance 
between costs associated with the automation of 
different test types and associated business relevance. 
Automation of unit tests is fast and cheap, but has low 
end-user relevance. Automation of E2E tests provides 
great coverage and has high end-user relevance, but 
is hard, time consuming, and expensive.

Report Defects
Defects found during test execution are reported 
immediately to the developers by using a defect 
management tool or face-to-face communication. The 
approach to managing Agile defects is to discuss, 
almost immediately after discovery, a possible solution 
for each defect. This does not mean that all defects 
have to be fixed immediately. It can still be a business 
decision whether a defect needs to be fixed or not.

Mobile Application 
Testing Add-ons

Build and Platform information
When testing mobile applications, exactly the same 
rules apply for creating execution logs and reporting 
defects as when testing non-mobile applications. 
There should not be any difference.

However, testers should be aware that proper 
creation of test execution logs and defect reporting 
becomes even more complex as the need for precise 
and detailed information about the test object and 
environment rises. In order to guide their efforts 
in determining the root cause of reported defects, 
developers (and other stakeholders) will require 
precise information about:

• Build: component and version of the objects 
under test

• Platform: device type, operating system, and 
hardware and software components of the mobile 
test device

This information can be found in the logs created by 
special apps made for this purpose (e.g., Catlog for 
Android OS). These logs grow to be very large when 
using the device for a long time, so it is best practice to 
clear the logs regularly.

Generalizing Defects
When a defect is being detected, the tester should 
apply reasonable effort to determine whether this 
defect also occurs under different conditions. Again, 
this is not different from defect reporting when testing 
non-mobile applications. 

However, when testing mobile applications, evaluating 
“reasonable effort” to further investigate whether 
a defect is more general than it first appears can 
quickly become rather complex. More aspects need 
consideration, such as determining whether the same 
defect is also showing on other device types, with other 
OSs, and with other connection types; the availability of 
the right test environment; etc. 

When there is a clear risk that additional investigation 
effort will have too much impact on the project’s test 
schedule and test budget, the project’s test manager 
should be consulted to jointly determine what can or 
cannot be done. 

 
 



46

Goals
The testing activity “Evaluate Test Project” 
involves writing and distributing a final test 
evaluation report that clearly evaluates 
the test project itself. It gives an overview 
of the challenges faced during the test 
project and lessons learned. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of evaluating the 
respective test project that satisfies the business 
requirement for testing of performing a clear 
evaluation of the test project, identifying the weak 
and strong points, and using the lessons learned to 
improve future projects by focusing on:

• The baseline and evolution of the test plan

• The feedback of the test team

• The conclusions and findings of the regular test 
reports issued during the project (e.g., test status 
reports, test summary reports)

and is achieved by

• Holding a lessons-learned meeting

• Writing a test evaluation report

• Distributing this test evaluation report

4. Test Project Closure (TPC)
4.1 Evaluate Test Project

Test Project Closure



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 47

TPC 4.1.1 Gather Test Summary and 
Test Status Reports                        
The first step is to gather all relevant documentation 
(test plan, test summary reports, test status reports, 
etc.). A lessons-learned meeting can be organized 
with the test team in order to fully understand the 
challenges that were faced during the test project.

TPC 4.1.2 Create Test Evaluation 
Report                                                                                        

With all relevant information at hand, the goal in this 
step is to write the test evaluation report according to 
the relevant project or company guidelines for writing 
test evaluation reports.        

TPC 4.1.3 Distribute Test Evaluation 
Report                                                                                                       
Once the test evaluation report is written, it needs to 
be distributed to all involved stakeholders. A formal 
signoff might be required.

TPC 4.1.3TPC 4.1.2TPC 4.1.1

Distribute Test 
Evaluation Report                                                          

Create Test 
Evaluation Report                                                                 

Gather Test 
Summary and Test 
Status Reports                                  



48 Test Project Closure

Maturity
The testing activity “Evaluate Test 
Project” that satisfies the business 
requirement of performing a clear 
evaluation of the test project, 
identifying the weak and strong points, 
and using the lessons learned to 
improve future projects is at:

Initial level
The testing activity is executed in an 
uncontrolled and chaotic way.

• The activity is not organized for all projects.

• If there is an evaluation of the test 
project, it takes place in a chaotic and 
uncontrolled way.

Starter level
The test manager gathers all relevant 
information, writes the test evaluation 
report, and distributes it in an informal way.

• For each project, the activity is organized.

• All project information is gathered: 
project test plan, detailed test plan, test 
status reports, and test summary reports.

• A test evaluation report is written at the 
end of each project.

• An informal handover to inform principal 
stakeholders and the project manager 
about the test evaluation report is set up.

Experienced level
The test manager gathers all relevant 
information, writes the test evaluation 
report, and distributes it in a formal way to 
all principal stakeholders.

• For each project, the evaluation of the 
test project is organized. Lessons-learned 
meetings with the test team take place 
and practical details are written for the 
test archive.

• Various types of project information are 
gathered: project test plan, detailed 
test plan, test status reports, and test 
summary reports.

• A test evaluation report with the 
consolidation of the lessons-learned 
meetings is written.

• Company guidelines for writing the test 
evaluation report are met.

• A formal distribution of the test 
evaluation report is set up and the report 
is stored in a central project archive.

Master level
The test manager gathers all relevant 
information, writes the test evaluation 
report, and distributes it to all stakeholders 
in a formal way according to company 
guidelines. 

• For each project, the evaluation of the 
test project is organized. Lessons-learned 
meetings with the test team and the 
stakeholders take place. Practical details 
are written for the test archive.

• Various types of project information are 
gathered: project test plan, detailed 
test plan, test status reports, and test 
summary reports.

• A test evaluation report with the 
consolidation of the lessons-learned 
meetings is written. A template from the 
test strategy is used.

• Formal distribution and archiving of the 
test evaluation report is set up according 
to company policy and formal approval  
is received.



STBoX 3.0 Generic Software Testing Process Framework 49

Agile Testing  
Add-ons

Project Retrospective
The project retrospective is an important part of the 
project closure. It is a retrospective that concentrates 
on a complete project or release. It is useful to use 
the Agile manifesto as a starting point and to reflect 
on the team’s performance on the main principles 
and identify possible improvements. This will lead 
to valuable insight and improvement to the overall 
process. In comparison to the sprint retrospective 
that is only meant for the team, in this meeting, the 
project manager, test manager, or other stakeholders 
are involved.

The goal and scope of a project retrospective differs 
slightly from a sprint retrospective. During the 
project retrospective, the attendees will address the 
following points:

• Look back at the whole project/release and talk 
about what went well, what didn’t go well, and  
what they would like to improve on in the next 
release/project. 

• Analyze the outcome and improvements defined 
during the different sprint retrospectives. 

• Evaluate definition of done and definition of ready 
and, if necessary, adapt them for upcoming projects. 

• Analyze the evolution of the velocity and check if 
there is any room for changes to the organizational 
structure, improving future productivity.

All suggested improvement actions are discussed and 
their added value is evaluated. The project team finally 
decides which of the defined actions will be applied to 
future projects. All of the improvement actions identified 
during the project retrospective must be addressed 
during the first iteration of a new project/release.

Evaluation Report
The added value of an evaluation report is to learn 
from the past and to improve future project success 
and quality. It is less valuable to focus too much 
on statistics, like number of executed test cases or 
found defects. It is more interesting to summarize 
the delivered items, the definition of done that was 

applied to ensure high-quality working software, and 
improvements defined during the project retrospective. 
The project closure takes all aspects of the project into 
account and does not only focus on testing. 

From a testing point of view, the following information 
is shared with the stakeholders: 

• Overview of delivered product backlog items

• Open defects

• Quality of automated unit tests

• Quality of automated regression tests

• Applied definition of done

• Improvement actions

Mobile Application 
Testing Add-ons

Quality
At the end of the test project, a final evaluation of the 
quality of the mobile application under test should 
be given. This final evaluation can be supported by 
traditional metrics like test specification coverage, test 
execution coverage, number of test cases passed/
failed, number of open defects, etc. It is also important 
to have a more qualitative evaluation of the mobile 
application under test by addressing quality attributes 
like functionality, usability, performance, etc.

Based on this final evaluation, a comparison can be 
made with initial expectations. These are expressed 
as acceptance criteria or as the definition of done, 
depending on the development methodology that is 
being applied. This way, formal acceptance advice to 
relevant stakeholders can be determined. Associated 
risks, workarounds, and mitigation actions should be 
reported as well. 

Lessons Learned
Mobile application development is very demanding. 
Due to fierce market competition and intense 
innovation, development cycles usually are very short. 
This is reflected in testing as well. Testing has to keep 
up with the pace without compromising application 
quality. As a result, all testing activities should be 
as efficient and as effective as possible, and proper 



50 Test Project Closure

support should be available at all times. During the 
project, continuous improvement should be a concern 
for everyone involved.

Additionally, lessons learned in the project should 
also be lifted across project borders. How can future 
projects profit from the lessons learned during the 
project that is about to be closed? This is a key 
question to be answered during evaluation of the test 

project. Different topics can be skimmed when looking 
for lessons learned:

• Test process

• Test approach

• Test environment

• Test team

The following questions can be helpful: 

Lessons Learned

Test Process

• Was the test process aligned with the software development life cycle?

• Was the test process clear for all stakeholders in the project?

• How were defects reported/managed?

• How was test progress reported/managed?

Test Approach

• Did we cover the right devices/operating systems/network connections?

• Did we cover the right test levels?

• Did we cover the right test types/quality attributes?

• Were the testing priorities clear?

• Was the effort spent on the right things/activities?

• What test (design) techniques were used?

• Was the test approach flexible enough to cope with project changes (scope/
planning/budget)?

Test Environment

• Was the test environment available as required/expected?

• Were there tests that could not be executed due to missing parts in the test 
environment?

• Did we have the right tools available?

• Did the tools perform as expected?

• Was test data available as required/expected?

Test Team

• Were the right skill set and competences available in the team?

• Was the test team co-located (shared workspace, same office building) or 
geographically distributed (different office buildings, different towns or countries, 
different time zones, etc.)?

• How did the test team cooperate? Was communication between test team members 
effective and efficient?

• How did the test team cooperate/interact with analysts, developers, other 
stakeholders, etc.?



STBoX 3.0 Generic Software Testing Process Framework 51STBoX 3.0 Generic Software Testing Process Framework 51



52

Goals
“Consolidate Test Deliverables” is a 
process in which all test deliverables are 
gathered and archived in a controlled way 
for each test project, and is described in 
the test strategy of the test project. This 
includes a formal handover of the test 
deliverables.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of consolidating 
test deliverables for the respective testing project 
that satisfies the business requirement for testing 
of collecting and archiving test deliverables for 
purposes of future reuse and compliance with 
relevant regulation frameworks and quality 
standards by focusing on:

• Collecting all test deliverables

• Identifying the reusable test deliverables

• Identifying the non-reusable test deliverables

• Archiving selected test deliverables in an  
agreed location

• Organizing the actual handover of selected test 
deliverables to the test object’s owner

and is achieved by

• Gathering test deliverables

• Conducting turnover of test deliverables to the test 
object’s owner

4. Test Project Closure (TPC)
4.2 Consolidate Test Deliverables

Test Project Closure



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 53

TPC 4.2.1 Gather Test Deliverables                                                                                                     
For the test project, all present test deliverables are 
gathered during this step.

TPC 4.2.2 Conduct Turnover                                                                                                                           

The gathered test deliverables are handed over to the 
future application owner.        

TPC 4.2.2 TPC 4.2.1 

Conduct Turnover                                                                    Gather Test 
Deliverables                                                                                        



54 Test Project Closure

 Maturity
The testing activity “Consolidate Test 
Deliverables” that satisfies the business 
requirement of collecting and archiving 
test deliverables for purposes of future 
reuse and compliance with relevant 
regulation frameworks and quality 
standards is at:

Initial level
The testing activity is executed in an 
uncontrolled and chaotic way.

• The activity is not organized for  
all projects.

• If test deliverables are gathered, it takes 
place in a chaotic and uncontrolled way.

Starter level
The test manager takes control of the 
“Consolidate Test Deliverables” testing 
activity, consolidates the test deliverables, 
and conducts a turnover.

• Test deliverables are gathered and 
archived for each project.

• There is no distinction made between 
reusable and non-reusable deliverables.

• An informal handover is set up to 
inform the stakeholders and the project 
manager about the repository. 

Experienced level
The test manager takes control of the 
“Consolidate Test Deliverables” testing 
activity, consolidates the test deliverables, 
and archives them in a central project 
location. There’s a formal handover in 
which principal stakeholders and the 
project manager are consulted.

• Test deliverables are gathered and 
archived for each project.

• Reusable deliverables and non-reusable 
deliverables are defined and stored 
separately in one project repository.

• Company guidelines for archiving have 
been met.

• During a formal meeting with the project 
manager, the test archive guidelines and 
repository are handed over.

Master Level
The test manager takes control of the 
“Consolidate Test Deliverables” testing 
activity, consolidates the test deliverables, 
and archives them in a central corporate 
location. There is a formal handover in 
which all of the stakeholders and the 
project manager are consulted.

• Test deliverables are gathered and 
archived for each project.

• A corporate repository has been created 
and communicated.

• Reusable deliverables and non-reusable 
deliverables are defined and stored 
separately in one corporate repository.

• Quality management has been consulted 
for approval; the process of archiving and 
setting up of the guidelines has been 
performed according to the test strategy.

• A formal meeting takes place with the 
project manager and all stakeholders 
involved to hand over the test archive 
guidelines and repository.

Agile Testing  
Add-ons

Project Closure
The main goal of Agile project closure is to hand over 
the product to the operational team. The project will 
be closed when all product backlog items in scope 
have been developed, accepted by the product owner, 
and handed over to the operational team. In Agile 
terms, this means that only features that have met 
the definition of done are ready for delivery and are 
shippable. All other items will either be archived or 
planned for an upcoming release. 



STBoX 3.0 Generic Software Testing Process Framework 55

Automated Test Scripts
The Agile manifesto states, “Working software over 
comprehensive documentation.” Generally, Agile 
seeks to minimize waste, which also applies to 
documentation. This is reflected in the test deliverables 
that are being consolidated at the end of the 
project. The main focus is on ensuring that the future 
application owner has a good overview of the delivered 
features and quality.

In a world of continuous integration, deployment, 
and delivery, it is quite obvious that from a testing 
point of view, reusable test deliverables mainly consist 
of automated test scripts. These are used as living 
documentation and are part of the regression test 
set to ensure that the quality of the product remains 
stable during the maintenance phase. This requires 
the transfer of knowledge concerning the setup, 
monitoring, and creation of automated builds. 

The most efficient and effective method of conveying 
information is face-to-face conversations, as described 
in the Agile principles. To ensure that the operational 
team is up to speed and familiar with the product when 
the system is handed over to them, it is important that 
they already participate in the review meetings at the 
end of each iteration. This way, they already gain the 
knowledge and are less dependent on documentation 
that might already be outdated when the product is 
shipped to production.

Mobile Application 
Testing Add-ons

Automated Test Scripts
Chances are very high that test cases need to be 
repeated many times, not only as a consequence of 
incremental/iterative development cycles that are often 
applied when developing mobile applications, but also 
due to the many platforms (device, operating system, 
network connection) that need to be tested. 

In this context, automated test scripts are the first and 
most important test deliverables to be consolidated 
and handed over to the application owner for 
future use. Automated test scripts are used as living 
documentation and are part of the regression test 
set that will help ensure the quality of the mobile 
application during consecutive releases. 

Test Environment
Test environment management is usually a very 
challenging activity when developing mobile applications. 
Therefore, future application owners will also welcome all 
test deliverables related to this subject. When feasible, 
the entire test environment will be handed over. 

This includes:

• Hardware

 – Devices

 – Cables

 – SD cards

 – Touch pen

 – Etc.

• Installed software

 – Operating system

 – Mobile application

 – Monitoring tools

 – Simulation tools

 – Etc.

• Related documentation

 – Test environment requirements

 – Inventory list

 – Installation procedures

 – Resetting procedures

 – Contracts with external suppliers (SLA/KPI)

 – Network setup

 – Etc.

 



56 Test Management

Goals
During the “Staff and Manage Test Team” 
activity, the test manager ensures the test 
team’s availability and performance.

Depending on the test project’s needs 
(i.e., defined roles and responsibilities), 
the test manager will assemble the test 
team. Team members with the right set 
of skills, experience, and attitude are 
selected. In doing so, the test manager 
will not only consider the individual’s 
ability to perform, but also the team’s 
ability to perform. Building a good 
and performant team is more than just 
bringing individuals together.

If needed, the test manager will organize 
proper training for the team members. Test 
team members should have the opportunity 
to gain or add to their knowledge and 
experience required to execute the 
responsibilities assigned to them.

Once the test team has been assembled, 
the team members’ technical capabilities, 
commitment, and motivation are 
continuously monitored and evaluated. If 
needed, appropriate measures are taken 
by the test manager.

This is an ongoing activity throughout the 
complete test project’s life cycle. 

Control over the testing process of staffing and 
managing the test team to ensure the test team’s 
availability and performance that satisfies the 
business requirement for testing of wanting to have 
the test project tested in the best way possible; 
making sure that people are fully trained to do the 
job in the best way possible; and making sure that a 
lack of resources will not slow down the project by 
focusing on:

• The number of resources needed according to the 
test plan

• The skill set needed according to the test plan

• The evolution and availability of the test team

and is achieved by

• Selecting the test team members at the beginning of 
the project

• Training the team members if needed

• Managing the test team

• Releasing the test team at the end of the project

5. Test Management (TM)
5.1 Staff and Manage Test Team



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 57

TM 5.1.1 Select Test Team                                                                                     
At the beginning of the project, the test manager 
builds the test team needed to complete the project. 
In the worst case scenario, he assigns the most 
appropriate roles to the people assigned to him. In 
the best case scenario, he can select the best team 
member for each role.

TM 5.1.2 Train Test Team                                                                                            
If needed, the test manager will make sure that the 
test team is trained for the task at the beginning of or 
during the project. 
 
 
           

TM 5.1.3 Manage Test Team                                                                                                                   
During the project, it is possible that team members 
will need to be added, replaced, or removed due 
to external (budget, time, scope, etc.) or internal 
(resignation, sickness, etc.) factors. The test manager 
anticipates or reacts to those factors and manages the 
team accordingly. 

TM 5.1.4 Release Test Team                                                                                                                                      
At the end of the project, the test team is released. 
This is done after the handover is complete and is 
usually done informally.

Release Test Team                                                                             Manage Test Team                                                                      Train Test Team                                                                           Select Test Team                                                                         

TM 5.1.4 TM 5.1.3 TM 5.1.2 TM 5.1.1 



58 Test Management

Maturity
The testing activity “Staff and Manage 
Test Team” that satisfies the business 
requirement of wanting to have the test 
project tested in the best way possible; 
making sure that people are fully trained 
to do the job in the best way possible; 
and making sure that a lack of resources 
will not slow down the project is at:

Initial level
The “Staff and Manage Test Team” testing 
activity is executed in an uncontrolled and 
chaotic way.

• For some projects, there is a test team 
and a test manager; for other projects, 
the tester acts as a test manager in 
addition to his testing responsibilities.

Starter level
The test manager gets a team assigned, 
tries to assign the correct role to each 
team member, and manages the test team 
in a reactive way.

• The test manager gets assigned a test team.

• Training is given “on the go” and when 
needed.

• Management of test team is done“ on 
the go” and when needed.

• The test team is managed in a reactive way.

Experienced level
The test manager can select his test team 
at the beginning of the project. He can 
select the test team members internally 
from a pool of testers, but it’s possible 
that he can even hire externally. The test 
manager can identify the training needs up 
front and reacts accordingly. Management 
of the test team is done proactively. 

• The test manager selects (test) staff that 
can take on the defined test project 
roles—selection can happen both 
internally and externally (hiring extra/
temporary resources).

• The test manager identifies training 
needs for test team members.

• The test manager arranges a training 
program for the test team members.

• On a regular basis, the test plan and the 
planning are evaluated, and actions to 
manage the test team are taken.

• The test team is managed in a 
proactive way.

Master Level
The test manager staffs his team, taking 
into account the level of independence 
wanted. Training needs are identified 
up front and the test manager acts 
accordingly. The test manager manages his 
team with a risk-based strategy.

• Depending on the level of independence 
wanted (dictated by the test approach) 
and the level of centralization of 
functions (dictated by the company’s 
test policy), the test manager will make 
agreements with principal stakeholders, 
line managers, and/or external parties to 
staff the test team.

• The test manager identifies training 
needs for test team members.

• The test manager arranges a training 
program for the test team members.

• The test team is managed by taking a 
project risk-based strategy into account.

Agile Testing  
Add-ons

Staffing
Before diving deep into the iterations, it is important 
to determine the number of testers and/or (domain) 
specialists needed during the release. Therefore, it is 
important to have a good understanding of the testing 
types and test effort required. Plan ahead to make sure 
the needed resources are allocated for the period of 
the project.  
 



STBoX 3.0 Generic Software Testing Process Framework 59

The amount and type of people in a testing role and 
the time needed to prepare the testing depend on 
several factors:

• Maturity level of the testers 

• Maturity level of the team 

• Complexity of the system under test 

• Number of test types in the scope of the project 

• Maturity level of test automation 

• Number of test cases that are automated 

• Product and project risks 

• Availability of the testers 

• Agile maturity level of the team 

For some iterations and stories, especially when faced 
with non-functional aspects of the project such as 
performance, usability, acceptance, or security testing, 
it might be necessary to bring in outside testing roles 
to temporarily support the team.

Since the allocation of the test resources must be done 
in close cooperation with other Agile teams and the 
project manager, the Agile test plan is a good place to 
document which test resources are part of the project, 
and which and when outside resources will be added to 
the project.

Skills
Test-driven development and acceptance-test-driven 
development are often applied by Agile teams. 
Therefore, it will be important to recruit resources, not 
mandatory testers, who have the appropriate skills and 
experience. Next to technical and business skills, it is 
important to have the adequate soft skills to achieve 
the goal by closely collaborating with each other to 
deliver business value. 

Below are some of the key traits that are important for 
an Agile tester:

• Open mindset

• Commitment

• Results-oriented

• Provide continuous feedback

• Close collaboration and communication with team 
members and stakeholders

• Practice continuous improvement

• Respond to change

• Self-organizing

One of the strengths of a tester is knowledge on 
both testing and business levels of what needs to be 
delivered. Paired with the requirements specified by 
the product owner, this combination makes a strong 
team that is able to describe exactly what is expected 
and what is not. Testers are also in an excellent position 
to critique and question requirements if they are 
unclear or ambiguous.

Training Needs
One way to satisfy training needs is by organizing 
formal training. The test manager plays an important 
role in providing input about the content and duration 
of training and assessing the impact of the training 
(needs) on the velocity of the team. This will be 
important to take into account once the team has 
started iterative development to ensure that time 
for training is allocated and taken into account when 
setting velocity and sprint targets in order to avoid 
having uncompleted stories at the end of a sprint.

Another way to satisfy the training needs is through on-
the-job coaching. For this, pair testing can be applied. 
Pair testing is one of the most common approaches 
used in Agile environments to share knowledge and get 
new or less experienced team members up to speed.

Test Manager
A main difference between classical and Agile projects 
is that in an Agile environment, testers are part of a 
self-organizing team and are less dependent on a test 
manager or team lead. It is a team’s responsibility to 
complete the committed work, identify impediments or 
bottlenecks, and escalate these to the Scrum master. 

The role of the test manager is less focused on 
managing the testers; the role is changing to a 
facilitating and consulting role, including following 
responsibilities:

• Function as the communication chain to senior 
management

• Increase the control on an Agile project and 
provide vision

• Provide guidance and leadership for both new and 
experienced testers and specialists



60

Goals
“Monitor and Adjust Test Plan” is a 
recurrent process during the project life 
cycle, which makes it possible to manage 
the test project and have a view of the 
possible impacts on the testing activities.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of monitoring and 
adjusting the test plan for the respective testing 
project that satisfies the business requirement for 
testing of being responsive to changes in the test 
project’s context and adjusting the test project 
governance in order to deliver agreed-upon test 
deliverables within time and budget and according 
to the agreed level of quality by focusing on:

• Continuously monitoring and re-evaluating the test 
project’s context

• Adjusting the test project’s scope according to the 
changed project context 

• Adjusting the test project’s test approach matrix 
(features to test, priorities, test techniques, etc.)

• Re-estimating the workload associated with the 
adjusted test project’s scope and test approach

• Adjusting the test project’s organization according to 
the adjusted test project’s scope, test approach, and 
associated workload

• Adjusting the test project’s schedule according to 
the adjusted test project’s scope, test approach, and 
associated workload

and is achieved by

• Monitoring and adjusting the project context

• Monitoring and adjusting the test scope

• Monitoring and adjusting the workload

• Monitoring and adjusting the test organization

• Monitoring and adjusting the test schedule

5. Test Management (TM)
5.2 Monitor and Adjust Test Plan

Test Management



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 61

TM 5.2.1 Monitor and Adjust Project 
Context                 
The project context is verified to ensure that the test 
plan always has the correct project scope. 

TM 5.2.2 Monitor and Adjust Test  
Scope                        
The test scope will be updated if necessary. Think 
about updating test levels, test types, test items, and 
the out-of-scope items.        

TM 5.2.3 Monitor and Adjust 
Workload                                                                              
Once testing has started, the workload is monitored, 
the actual and planned workloads are compared, and 
re-estimations can be done. 

TM 5.2.4 Monitor and Adjust Test 
Organization                                                              
The test organization is monitored to ensure that 
the test team is still capable of executing all tasks as 
described within the test plan. 

TM 5.2.5 Monitor and Adjust Test 
Schedule                                                                                        
The team ensures that the test schedule is still up-to-
date. A comparison between the actual and planned 
test schedules, as well a comparison between the 
actual and planned budgets, is performed.

TM 5.2.1

Monitor and 
Adjust Project 
Context                      

Monitor 
and Adjust 
Workload                                  

Monitor and 
Adjust Test  
Scope                                

Monitor and 
Adjust Test 
Organization                   

Monitor and 
Adjust Test 
Schedule                            

TM 5.2.2 TM 5.2.3 TM 5.2.4 TM 5.2.5



62 Test Management

Maturity
The testing activity “Monitor and Adjust Test 
Plan” that satisfies the business requirement 
of being responsive to changes in the test 
project’s context and adjusting the test 
project governance in order to deliver 
agreed-upon test deliverables within time 
and budget and according to the agreed 
level of quality is at:

Initial level
The “Monitor and Adjust Test Plan” testing 
activity is executed in an uncontrolled and 
chaotic way.

• The test plan is not monitored and 
adjusted for all projects.

• If the test plan is monitored and adjusted 
for a project, it is done in a chaotic and 
ad hoc way.

Starter level
The test manager takes control of the 
“Monitor and Adjust Test Plan” testing 
activity and decides when and if a test plan 
needs to be adjusted. The test manager 
can consult the principal stakeholders, but 
it’s not mandatory.

• For each project, the test plan is 
monitored and adjusted.

• This activity is done in an ad hoc way 
whenever changes are needed.

• The test manager decides when and if 
the test plan needs to be adjusted.

• Principal stakeholders might be 
consulted in this activity, but they don’t 
take an active role.

• Once the test plan has been adjusted, a 
notification can be sent to the principal 
stakeholders.

Experienced level
The test manager takes control of the 
“Monitor and Adjust Test Plan” testing 
activity and performs a regular activity to 

adjust the test plan. This activity happens in 
a controlled way and principal stakeholders 
are informed in the case of changes. 

• For each project, the test plan is 
monitored in a controlled way.

• The test manager performs a regular 
activity that monitors the test plan.

• If changes are needed, principal 
stakeholders are informed and together 
with the test manager, they decide what 
changes are needed.

• Once the changes are decided upon, the 
test manager adjusts the test plan (or test 
plans, one for each test level).

• Once the test plan is adjusted, the 
principal stakeholders receive a 
notification. 

Master level
The test manager and all stakeholders 
take control of the “Monitor and Adjust 
Test Plan” testing activity; a regular 
monitoring activity is set up. This 
activity happens in a controlled way, all 
stakeholders are informed, and a meeting 
is organized to discuss the necessary 
actions to be taken.

• For each project and test plan, a 
monitoring activity is set up with the test 
manager and all stakeholders.

• If an action is needed to adjust the test 
plan, all stakeholders are informed that 
action is needed and a meeting is planned 
to discuss what action needs to be taken.

• The necessary action is agreed upon by 
all stakeholders involved and all other 
stakeholders are informed about the 
action to be taken.

• The test manager adjusts the test plan to 
reflect the action taken.

• Once the test plan is adjusted, all 
stakeholders receive a notification. 

• The test plan is placed under version 
management and with each update, the 
version is adapted.



STBoX 3.0 Generic Software Testing Process Framework 63

Agile Testing  
Add-ons

Adjust Test Scope
One of the core Agile values is a quick response to 
change. Short feedback loops and close cooperation 
with the customer can result in changes to the project 
scope that is monitored and updated by the product 
owner. Such a scope change can also possibly impact 
the prioritization of the features in the product backlog.

In Agile projects, it is the team’s responsibility to 
monitor the progress of committed activities. The work 
to be done is often visualized using a task, Scrum, or 
Kanban board, and followed up on during the daily 
stand-up meeting. The remaining workload is made 
visible by a release burndown/up chart or a dashboard 
keeping track of remaining epics or user stories.

Test Team
Normally the team monitors the amount of completed 
features and adjusts the velocity for upcoming 
sprints in order to meet definition of done for all 
features of the sprint backlog at all times. However, 
when for some reason, in a particular sprint, testing 
does become a bottleneck and features cannot be 
completely tested anymore, other team members will 
support the testers in completing testing activities 
rather than adding additional test resources to the 
team. Only in the event that there is no other option, 
the team will be scaled up to increase the number of 
resources to complete the work.

 



64

Goals
This activity specifies how anomalies are 
handled during the project. Anomalies can 
be defects, events, issues or changes:

• Defects are differences between 
expected and actual results of the system 
under test detected during the Test 
Execution phase. 

• Events are situations during the project 
which can cause a delay if no appropriate 
actions are taken.

• An issue is a situation occurring during 
the test process which will definitely 
cause a delay.

• A change can occur during the test 
project lifetime and will result in an 
alternation of the initial test plan.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of managing all 
anomalies observed during the test project to a 
closure that satisfies the business requirement for 
testing of resolving all anomalies that might impact 
the quality of the test object in particular, and the 
test project in general, by focusing on:

• Gaining knowledge about the content of the 
detected anomaly

• Assigning the anomaly to the correct stakeholder in 
order to have it investigated

• Defining the solution of the anomaly

• Implementing the solution of the anomaly

• Verifying and closing the anomaly

and is achieved by

• Identifying the anomaly

• Investigating the anomaly

• Determining a solution to the anomaly

• Resolving the anomaly

• Closing the anomaly

5. Test Management (TM)
5.3 Manage Anomalies

Test Management



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 65

TM 5.3.1 Identify Anomaly                                                                     
Once an anomaly is detected in the test project, 
the first step is to make sure it is correctly defined. 
Information about the anomaly is gathered, its impact 
on the project and/or product is defined, and the 
anomaly is logged. All stakeholders involved in the 
project can and should identify the anomalies they  
are detecting.

TM 5.3.2 Investigate Anomaly                                                                               
The type of anomaly is determined and a responsible 
stakeholder is assigned to the anomaly. The root 
cause of the problem is defined, together with an 
impact analysis which defines the priority of the 
anomaly. Alternative solutions and/or workarounds 
are determined to mitigate the anomaly. Additional 
documentation is added to the anomaly that was  
logged earlier.

TM 5.3.3 Determine Solution to 
Anomaly                                                                            
The final solution to the anomaly is defined in this 
step. The solution is approved and the anomaly which 
was logged earlier is updated with information on 
what the solution will be, what the effort is, when it 
can be implemented, what the cost is, and what the 
potential risk is.

TM 5.3.4 Resolve Anomaly                                                                                                         
The defined solution is implemented. Any updates 
about the anomaly on the level of actual effort, 
schedule, cost, and risk are documented with the 
anomaly that was logged earlier.                  

TM 5.3.5 Close Anomaly                                                                                                   
The implemented solution is verified, resulting in 
two different possibilities: the solution is accepted 
or not accepted. In case of acceptance, the anomaly 
is closed. In case of a non-acceptance, the anomaly 
remains open and steps 2, 3, 4, and 5 are executed 
again. The verification result is documented with the 
anomaly that was logged earlier, along with the close 
date and close type.            

TM 5.3.1

Identify 
Anomaly                                                        

Determine 
Solution to 
Anomaly                                

Investigate 
Anomaly                                                        

Resolve 
Anomaly                                                           

Close 
Anomaly                                                              

TM 5.3.2 TM 5.3.3 TM 5.3.4 TM 5.3.5



66 Test Management

Maturity
The testing activity “Manage Anomalies” 
that satisfies the business requirement of 
resolving all anomalies that might impact 
the quality of the test object in particular, 
and the test project in general is at:

Initial level
The “Manage Anomalies” testing activity is 
executed in an uncontrolled and chaotic way.

• Only defects are taken into account.

• Every defect is at least tracked by email 
for a project.

• Solutions of defects are not always 
verified by a retest.

Starter level
All types of anomalies (defects, events, 
issues, and changes) are managed. 
When deemed necessary/useful, relevant 
principal stakeholders are consulted during 
the process.

• All anomaly types are managed to a final 
closure following a predefined life cycle, 
which is uniform for the whole project.

• Anomalies are tracked in a project 
repository.

• Occasional meetings are organized to 
discuss the solution of particular anomalies 
with relevant (based on their knowledge 
and experience) principal stakeholders.

• A final solution is applied to every 
relevant anomaly.

• The solution of an anomaly is always 
verified.

Experienced Level
All types of anomalies (defects, events, 
issues, and changes) are managed. During 
the process, the principal stakeholders are 
consulted on a regular basis.

• All anomaly types are managed to a final 
closure following a predefined life cycle, 
which is uniform for the whole project.

• Anomalies are tracked in a project 
repository.

• Regular meetings are organized to 
discuss alternative solutions for every 
relevant anomaly with the principal 
stakeholders.

• Different possible solutions to solve an 
anomaly are considered and evaluated.

• A final solution is applied to every 
relevant anomaly.

• The solution of an anomaly is always 
verified.

Master level
All types of anomalies (defects, events, 
issues, and changes) are managed. During 
the process, all stakeholders are consulted 
on a regular basis.

• All anomaly types are managed to a 
final closure following a predefined life 
cycle, which is uniform for the whole 
organization.

• A life cycle to manage anomalies is 
documented in the corporate test 
strategy or test policy.

• Anomalies are tracked in a corporate 
repository.

• Regular meetings are organized to 
discuss alternative solutions for every 
relevant anomaly with all principal 
stakeholders.

• Different possible solutions to solve an 
anomaly are considered and evaluated. A 
detailed cost/benefit evaluation for each 
solution is conducted.

• A final solution is applied to every 
relevant anomaly.

• The solution of an anomaly is always 
planned and verified.

• A causal analysis study is conducted in 
order to find new related anomalies and/
or to put preventive measures in place.

 



STBoX 3.0 Generic Software Testing Process Framework 67

Agile Testing  
Add-ons

Defects
It is best to agree upon the defect management 
approach in the initial planning phase. 

Usually, defects related to new functionality have to be 
fixed during the sprint to fulfill definition of done. Most 
teams do have a “zero tolerance,” meaning that all 
known bugs need to be solved in order to get stories 
accepted. The main reason for this is to keep the code 
maintainable and avoid technical debt. 

It is not uncommon that new defects are not 
immediately entered in a defect tracking tool. Instead, 
testers might address defects to the developers 
immediately. Together, they deal with them quickly and 
effectively and work together to reproduce and solve the 
defect. Defects that can be solved within the same sprint 
will not be entered in the project’s defect tracking tool, 
while those that cannot be solved in time will be.

The decision to investigate and solve defects is based 
on the priority of related user stories. This means that 
blocking defects concerning lower-prioritized user 
stories may get lower priority and have to wait until the 
more important features have been completed. Priorities 
are determined together with the product owner.

In the event that the team has agreed with the product 
owner that low-priority defects will not be solved in the 
same sprint, or a defect has been spotted after a story was 
accepted, the team needs to make that visible and add 
the defect to the product backlog. The decision regarding 
if and when (what sprint) a defect will be fixed depends on 
the business value and the priority of the defect. 

In order to avoid regression, automated tests are often 
created to cover identified defects. These tests are 
added to the continuous integration framework to 
ensure that the code doesn’t break in the future.

Impediments
Impediments are events or issues that can cause a 
delay or prevent Agile teams from completing their 
stories, impacting the team’s velocity. Therefore, 
impediments should be raised as early as possible. 
Proper understanding of the impact on the team’s 
productivity is very important.

It can be useful to differentiate between impediments 
that slow down the team and those that completely 
block progress on features. Some examples are:

• Sickness of team members

• Unforeseen changes in team composition

• Issues with tools

• Unavailability of hardware

• Technical debt

• Missing dependencies

• Miscommunication

• Unavailability of the product owner

First, the Scrum master visualizes the impediments on 
an impediment board to improve transparency. The 
Scrum master follows up to ensure the impediment 
gets resolved, but it is the whole team’s responsibility 
to address the impediment. Before taking action, it can 
be useful to analyze the root cause using tools like the 
5 Whys or the Fishbone diagram. 

Ideally, the Scrum team can remove any impediment 
itself, but this is not always the case. When this 
happens, the Scrum master will find an external party 
that can help to remove the impediment.

The impediment removal process should not stop 
when the impediment has been successfully removed. 
The team should practice continuous improvement 
and learn from the impediments and define actions to 
prevent similar impediments in the future. Especially 
when dealing with reoccurring impediments, the team 
should discuss how such issues can be avoided in 
the future and define action points for the upcoming 
iterations during the retrospective meeting. 

Changes
Scope creep is handled differently in Agile projects 
than in traditional projects. As described in the Agile 
manifesto, it is more important to respond to change 
and to collaborate with the customer instead of 
following a plan and negotiating contracts.

So, if a change request is identified by one of the team 
members or stakeholders during the sprint or review 
meeting, the change will be analyzed and discussed 
with the product owner or customer. 

If the change has added value to customer, the feature 
is added to product backlog, prioritized, and estimated 
by the team, taking all testing effort into account. 



68

Goals
During this activity, the test manager 
will provide regular feedback to the test 
project’s stakeholders. Depending on the 
stakeholder’s information needs, different 
reports will be created and communicated.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of reporting on the 
test project that satisfies the business requirement 
for testing of wanting to have a clear view of the 
progress of the test process; the planning versus the 
actuals; the number of anomalies; and the actions 
to be taken to keep the project in line with the test 
plan by focusing on:

• The evolution of the anomalies 

• The actual progress of the project versus the planned 
progress

• Regular meetings with the test team to discuss the 
reported anomalies and the progress made

and is achieved by

• Gathering the anomalies

• Gathering the test progress

• Analyzing the gathered data

• Writing the test reports

• Distributing the test reports

5. Test Management (TM)
5.4 Reporting

Test Management



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 69

TM 5.4.1 Gather Anomalies                                                                       
The test manager will gather all relevant anomalies from 
the anomaly database, sort them by priority, and verify 
that all anomalies are updated to the latest status.

TM 5.4.2 Gather Test Progress                                       
The test manager will gather the actual progress made 
on the different planned testing activities based on the 
test cases repository, the test execution log, meetings 
with test team staff, etc. The number of test cases that 
have been created and executed since the last test 
reporting are counted and collected. Also, test cases 
still to be created/executed are estimated.       

TM 5.4.3 Analyze the Gathered Data                                                               
In order to start writing the test report, the test 
manager has to analyze the data gathered in the 
first two steps. By applying dedicated metrics, the 
data gathered is now transferred into information 
worth reporting to the different stakeholders (e.g., 
test preparation coverage, test execution coverage, 
traceability, etc.). The evolution of the anomalies and 
the evolution of the test progress will be reported and 
future actions will be determined.           

TM 5.4.4 Write Test Report                                                                                                     
Following the project or company guidelines or 
templates for the respective test reports (e.g., test 
status report, test summary report), the test manager 
writes the test report based on the conclusions made 
in step 3.

TM 5.4.5 Distribute Test Report                                                                                                          
After the test report is written, the test manager 
distributes the test report to the stakeholders involved.  

TM 5.4.1

Gather 
Anomalies                                                           

Analyze the 
Gathered Data                                        

Gather Test 
Progress                                                    

Write Test 
Report                                                        

Distribute Test 
Report                                                 

TM 5.4.2 TM 5.4.3 TM 5.4.4 TM 5.4.5



70 Test Management

Maturity
The testing activity “Reporting” that satisfies 
the business requirement of wanting to 
have a clear view of the progress of the 
test process; the planning versus the 
actuals; the number of anomalies; and the 
actions to be taken to keep the project in 
line with the test plan is at:

Initial level
The “Reporting” testing activity is executed 
in an uncontrolled and chaotic way.

• There is some test reporting, but it is 
informal, infrequent, and limited to 
defects and progress made.

• Not all interested stakeholders are 
reported to.

• The test report is sent by mail or by oral 
communication in an infrequent way.

Starter level
The test manager writes a test report 
for each test project and distributes it to 
principal stakeholders on an infrequent or 
on-demand basis

• Defects and anomalies are gathered from 
the tracking tool.

• Test progress versus planned progress is 
gathered via informal meetings with the 
test team and the test management tool.

• The test report in is writing, but not in a 
fixed format.

• The test report is sent infrequently to the 
principal stakeholders.

Experienced level
The test manager writes a test report 
for each test project and distributes it to 
principal stakeholders on a planned basis.

• Defects and anomalies are gathered from 
the tracking tool.

• Test progress versus planned progress 
is gathered via formal and frequently-
planned meetings with the test team.

• The test report is in writing and in a fixed 
template described in the test strategy.

• The test report is sent to all principal 
stakeholders on a frequent and 
planned basis.

Master level
The test manager writes a test report for 
each test project and distributes it to all 
stakeholders on a planned basis.

• Defects and anomalies are gathered from 
the tracking tool.

• Test progress is gathered in an 
automatic way (with the use of a test 
management tool).

• The test report is in writing and in a fixed 
template described in the test policy.

• The test report is sent to all stakeholders 
on a frequent and planned basis. 



STBoX 3.0 Generic Software Testing Process Framework 71

Agile Testing  
Add-ons

Agile Reporting
Following the Agile principles, it is more important to 
focus on open communication and working software. 
Stakeholders are mainly interested in an overview of 
features that are ready to be delivered and not in stories 
that haven’t been completely developed or tested. In 
summary, only “done” counts in Agile projects.

Hence, there is less need for detailed and extended 
reports mentioning metrics like the number of test 
cases created, the number of test cases executed, or 
the number of found issues during sprints. Instead, it is 
sufficient to provide a dashboard to the stakeholders 
containing the following information:

• Burndown charts on sprint and release level

• Completed features/user stories

• Change requests added to product backlog

• Open defects

• Impediments

• Team’s velocity

Within an Agile context, testing activities are part of 
the tasks that have to be completed in order to finish 
features and to deliver working software. Therefore, 
the reporting is mostly done in terms of user stories 
of features and value to the customer rather than 
development or testing activities. As a result, there is 
no need for a separate test status report. The status of 
testing is reflected in the progress as a whole. 

Daily Stand-up Meeting
In most Agile approaches, teams use daily stand-up 
meetings to track the progress, impediments, risks, 
and challenges that arise. The status of user stories and 
the corresponding (test) activities is made visible on 
the task board that is constantly kept up-to-date by all 
team members. 

Progress
Progress can be reported on different levels: the status 
of a specific user story, the status of the current sprint, 
or the status of the entire release might be points  
of interest. 

• User story dashboards can be used to visualize the 
features that are completed and the user stories that 
still need to be delivered.

• Sprint burndown charts reflect the progress during a 
sprint and are updated daily. The Y axis indicates the 
remaining effort and the X axis indicates the length  
of iteration.

• Release burndown charts show implementation 
progress during the release. This chart is the key 
information radiator for the project’s overall status. It 
provides answers to questions like: 

 – When could release be completed based on 
previous progress? 

 – What progress has been made in previous 
iterations? 

 – Is the velocity of the team sufficient to complete 
the release on time? 

Quality
Also, quality reporting can be done on different levels:

• Results of automated tests give a good overview 
of the stability of the code and can be shared with 
stakeholders. Test automation on several levels 
supports the team in delivering good quality, working 
software. It is key to apply continuous testing within 
a more global approach of continuous integration, 
continuous deployment, and continuous delivery. 

• A demo of working software at the end of the sprint 
is the most efficient and reliable way to report quality. 
In Scrum, during the review meeting at the end of the 
sprint, a live demonstration of the developed features 
is given to the product owner and the stakeholders to 
show all stories completed by the team and to prove 
the definition of done is satisfied.

 



72

Goals
The test manager or (independent) quality 
manager will assess the quality of the test 
organization.

The goal of the activity is to detect 
possible deficiencies in the test project’s 
organization (e.g., communication 
between different sub-teams, outsourcing 
practices, hierarchical structure, level 
of professionalism, etc.) and to make 
recommendations to solve these 
deficiencies.

Implementing the recommendations 
can also be part of this activity, when all 
relevant stakeholders agree to do so.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of monitoring quality 
of the test organization that satisfies the business 
requirement for testing of making sure that the test 
organization that is in place is able to execute 
the testing activities at hand and in a proper way 
(properly executing the test process and delivering 
quality test products) by focusing on:

• Comparing compliance of the actual test 
organization with the intended or documented test 
organization

• Determining and reporting non-compliance 
(deviations from intended or documented test 
organization) of the actual test organization

• Taking necessary measures to remediate all reported 
non-compliance of the project’s test organization

• Detecting and reporting shortcomings and 
insufficiencies of intended or documented test 
organization

• Taking necessary measures to remediate all reported 
deficiencies of the intended or documented test 
organization

and is achieved by

• Assessing organizational quality

• Defining organizational improvements

• Planning organizational improvements

• Implementing organizational improvements

• Verifying organizational improvements

6. Quality Management (QM)
6.1 Monitor Organization

Quality Management



STBoX 3.0 Generic Software Testing Process Framework 73

During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

Steps

QM 6.1.1 Assess Organizational 
Quality                                            
The quality level of the project’s test organization is 
checked based on the intended (not documented) or 
expected (documented in the project’s test plan or the 
corporate’s organizational model) level of quality. This 
happens on a daily basis and can be considered part of 
the “Staff and Manage Test Team” activity.  
 
In the event that organizational non-quality is 
identified, applying a more formal management 
review or (external) audits can deliver more detailed 
information on the organizational non-quality. 
Organizational non-quality can originate from 
non-compliance of the actual test organization 
with the intended or expected test organization, 
or from deficiencies in the intended or expected 
test organization. Regardless of the origin, all 
organizational non-quality is reported.

QM 6.1.2 Define Organizational 
Improvements                                
Actions to remediate reported organizational non-
quality are defined. At the same time, if not already 
available from the project’s test plan or the corporate’s 
organizational model, metrics that can be used to 
measure the test organization’s quality level will  
be defined.            
 
 
 
 
 
 
 
 

QM 6.1.3 Plan Organizational 
Improvements                                                                     

Based on the available resources (time, budget, 
people), defined actions to remediate organizational 
non-quality are planned for execution. Also, activities 
for collecting data measures and calculating defined 
metrics to measure organizational improvements 
(before/after) are planned. All organizational non-
quality, due to non-conformance with the intended 
or expected test organization, should be addressed 
during the test project. Actions to resolve deficiencies 
of the test organization can be postponed or referred 
to a higher level of responsibility.

QM 6.1.4 Implement Organizational 
Improvements                                                                       
A “before picture” of the respective organizational 
quality is created. Planned actions for collecting 
data measures and calculating “before” metrics are 
executed. Once the before picture is created, actions 
remediating respective organizational quality are 
executed as planned.                   

QM 6.1.5 Verify Organizational 
Improvements                                                                                          
Once the organizational improvements have been 
implemented, planned actions for collecting data 
measures and calculating “after” metrics are 
executed. Based on the before and after metrics, 
actual organizational improvement is verified. When 
the improvement proves to be insufficient, the 
improvement cycle might be repeated.                  

QM 6.1.1

Assess 
Organizational 
Quality                                 

Plan 
Organizational 
Improvements                         

Define 
Organizational 
Improvements                   

Implement 
Organizational 
Improvements              

Verify 
Organizational 
Improvements                                                            

QM 6.1.2 QM 6.1.3 QM 6.1.4 QM 6.1.5



74 Quality Management

Maturity
The testing activity “Monitor 
Organization” that satisfies the business 
requirement of making sure that the test 
organization that is in place is able to 
execute the testing activities at hand in 
a proper way (properly executing the 
test process and delivering quality test 
products) is at:

Initial level
The “Monitor Organization” testing 
activity is executed in an uncontrolled and 
chaotic way.

• The activity is not organized for all projects.

• If the activity is executed, it is executed in 
a chaotic and ad hoc manner.

Starter level
Determining and improving test 
organization non-quality is incorporated 
into the daily activity of managing the test 
team. The test manager responds to the 
determined organizational non-quality 
on an ad hoc basis. The test manager 
identifies what organizational non-quality 
is addressed by taking into account 
feasibility (available resources) and plans 
test organization improvement actions 
accordingly.

• For each project, the test organization is 
monitored.

• The organization monitoring is merely 
part of the “Staff and Manage Test Team” 
activity.

• Organization monitoring is executed in 
an informal way; the test manager reacts 
to organizational weaknesses that are 
observed during daily follow-up of the 
test team.

• It is the test manager who, in the end, 
decides whether the organizational 
weakness will be addressed and how this 
will be done. 

• The test manager escalates 
organizational improvement actions that 
are beyond the scope of his mandate to 
the project manager.

• Defined organizational improvement 
measures are implemented in an ad 
hoc manner.

Experienced level
Determining and improving test 
organization non-quality is incorporated 
into the daily activity of managing the test 
team. Together with principal stakeholders, 
the test manager and quality manager 
identify what organizational non-quality is 
addressed by taking into account feasibility 
(available resources) and incorporate 
organizational improvement actions into 
the global test project.

• For each project, the test organization is 
monitored.

• The organization monitoring is part of the 
“Staff and Manage Test Team” activity.

• When possible organization weaknesses 
are identified, the test manager can 
decide to organize a satisfaction survey, 
a collaborative cooperation scan, or even 
a management review focusing on the 
testing organization.

• The test manager and/or quality 
manager discuss possible organizational 
improvement measures with principal 
stakeholders. Together, they decide on 
the organizational improvements that 
will be addressed in the ongoing test 
project (given time, resource, and quality 
constraints).

• Defined and agreed-upon organizational 
improvement measures are incorporated 
into the global test plan (see “Plan Test 
Project” and “Monitor and Adjust Test 
Plan” activities).

• Organizational improvement actions that 
cannot be implemented in the scope of 
the (current) test project are drafted in a 
lessons-learned report.

• The impact of organizational 
improvement actions is monitored.



STBoX 3.0 Generic Software Testing Process Framework 75

Master level
Determining and improving test 
organization non-quality is incorporated 
into the daily activity of managing the test 
team. However, external (not organized 
by the project) audits can be a secondary 
source of test organization non-quality 
determination. Together with relevant 
stakeholders, the test manager and quality 
manager identify what organizational 
non-quality is addressed by taking into 
account feasibility (available resources) and 
incorporate organizational improvement 
actions into the global test project. 

• For each project, the test organization is 
monitored.

• The organization monitoring is part of the 
“Staff and Manage Test Team” activity.

• When possible organization weaknesses 
are identified, the test manager can 
decide to organize a satisfaction 
survey, a collaborative cooperation 
scan, a management review, or even an 
(external) audit focusing on the testing 
organization.

• In addition to daily follow-up and in line 
with the corporate quality policy, an 
(external) test process assessment can 
also be organized.

• The test manager and/or quality 
manager discuss possible organizational 
improvement measures with all 
stakeholders. Together, they decide on 
the organizational improvements that 
will be addressed in the ongoing test 
project (given time, resource, and quality 
constraints).

• Defined and agreed-upon organizational 
improvement measures are incorporated 
into the global test plan (see “Plan Test 
Project” and “Monitor and Adjust Test 
Plan” activities).

• Organizational improvement actions that 
cannot be implemented in the scope of 
the (current) test project are drafted in a 
lessons-learned report. 

• The impact of organizational 
improvement actions is measured.



76 Quality Management

Agile Testing  
Add-ons

Individuals and Interactions
The first principle of the Agile manifesto states, 
“Individuals and interactions over processes and 
tools.” This should come as no surprise, since the most 
efficient and effective method of conveying information 
to and within a development team is face-to-face 
conversation. 

Retrospective
In a self-organizing team, all team members have 
to monitor the quality, productivity, and efficiency 
of the team. For example, if the team is not able 
to accomplish the committed work several times in 
a row, it should consider if it is due to the current 
organizational or team structure. 

During the retrospective, the team carefully examines 
the composition of the team on the one hand and the 
structure of the team on the other hand. First, the team 
identifies the weaknesses of the team and analyzes the 
root causes before defining actions. Some possible 
questions that have to be answered are:

• Is the team’s velocity not sufficient?

• Is there any bottleneck?

• Are communication and collaboration as expected?

• Is the team structure slowing down the team’s 
progress?

• Should the team size be adapted?

• Lack of knowledge?

• Does everybody have an open mindset?

• Are technical skills in place to automate test scripts?

Co-located Teams
Having co-located teams is key to improved (face-
to-face) communication, teamwork, team spirit, 
and knowledge sharing. There are several kinds of 
co-located teams. People may be located in the 
same building, but in different offices. Others can sit 
together on the same floor or in the same office, but 
they are separated by walls. The most productive and 

efficient constellation of a co-located team is all team 
members sitting together in a shared workspace 
where each member of the team is able to see the 
other team members, including the Scrum master and 
product owner.

From a testing point of view, the ideal situation is 
having all of the testers located in the same office next 
to the product owner and developers. Co-location 
makes life easier for testers. They can convince the 
other team members that their contribution adds value 
to the team much faster. The relationship between the 
developers and testers improves and doubts about 
testers’ participation are quickly gone. Testers are no 
longer seen as troublemakers, but as a real part of the 
team. They all pull together to achieve the goals.

Distributed Teams
Effective collaboration and good communication 
between team members and stakeholders is key to 
success. Unfortunately, having co-located teams is not 
always possible and distributed teams are set up. There 
are several types of distributed teams. Some teams are 
split between two locations in the same city or country, 
some team members might be working from home, 
while other teams are much more geographically 
dispersed, even working in different time zones.

Often, one of the main reasons why companies 
are working with distributed Agile teams is cost 
reduction. However, the effort and time needed to 
get a distributed team performing at the same level 
as co-located teams is often highly underestimated. In 
order to build a successful team, it is necessary to run 
through the four stages of the Tuckman9 model: 

• Forming

• Storming

• Norming

• Performing

It can be a challenge to build the relationship and trust 
between distributed team members. The distance and 
possible time differences make effective collaboration 
and face-to-face communication difficult. Due to this, 
the Forming and Storming stages of a distributed Agile 
team can take considerably longer in comparison to 
co-located Agile teams. As a consequence, distributed 
teams will reach the Norming stage (in which it 
effectively works together) and the Performing stage  

9 Tuckman, Bruce. “Developmental Sequence in Small Groups.” Psychological Bulletin Vol 63, no. 6 (June 1965): 384-399. http://dx.doi.org/10.1037/h0022100



STBoX 3.0 Generic Software Testing Process Framework 77

(in which the team is functioning completely) much 
later. But with clear agreements and discipline, it is 
possible to have distributed teams performing at the 
same level as co-located teams.

From a testing point of view, the least preferable 
situation is when the testers are not sitting next to 
the product owner and developers, as is often the 
case when testing is outsourced or done offshore. 
If this happens, testers will be slowed down in their 
investigation to check out how things are working. 
Close cooperation with the product owner or 
developer will be more difficult and challenging due 
to the distance. Testers will need to put much more 
effort into communication in order to share knowledge, 
explain their position, or set the record straight. The 
strength of a tester—a critical mindset and interaction 
with all people involved—cannot be used to its fullest 
advantage anymore.

Improvements
The team is only as strong as the weakest link in the 
chain. So, it is important to get the weakest link to the 
same level as the rest of the team. This is achieved 
by doing an assessment of the skills, strengths, 
and weaknesses of each individual. Based on this 
information, the team identifies possible improvement 
actions to support the weakest team member in order 
to increase the velocity of the team.

If the team structure is causing an issue, then scaling 
out, scaling up, reducing team size, or reducing 
number of teams are some possibilities to improve the 
organization.

• In the event that there are distributed teams, it might 
be better to reduce the team size and to establish 
two smaller, but co-located teams instead of having 
one large team distributed over several sites.

• In the event that there are co-located teams, it can be 
more efficient to reduce team size and to have more 
teams in parallel in order to increase the productivity.

• Another option is to restructure the teams by 
introducing component, feature, or functional teams.

 

 

 

STBoX 3.0 Generic Software Testing Process Framework 77



78

Goals
While the test project as a whole aims at 
monitoring the quality of the final project 
deliverables or test object (e.g., application 
software, procedures, documents, etc.), the 
goal of the “Monitor Product” activity is 
to monitor the quality of the intermediate 
products delivered during the project (e.g., 
requirement documents, technical design 
documents, code, test plan, test cases, test 
reporting, etc.). 

The test manager or (independent) 
quality manager will assess the quality 
of the intermediate project deliverables 
and define and implement product 
improvements in the event that the quality 
standards set for the intermediate project 
deliverables are not met.

 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of monitoring quality 
of the product that satisfies the business requirement 
for testing of ensuring that all intermediate products 
delivered during the project will have the desired 
level of quality by focusing on:

• Comparing quality of the actual intermediate 
project deliverables with expected or documented 
acceptance and/or quality criteria

• Determining and reporting product non-quality 
(deviations of actual quality from expected quality) of 
actual intermediate project deliverables 

• Taking the necessary measures to improve all 
reported (and confirmed) product non-quality of the 
project’s intermediate deliverables

and is achieved by

• Assessing product quality

• Defining product improvements

• Planning product improvements

• Implementing product improvements

• Verifying product improvements

6. Quality Management (QM)
6.2 Monitor Product

Quality Management



Steps
During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

STBoX 3.0 Generic Software Testing Process Framework 79

QM 6.2.1 Assess Product Quality                                                          
The quality level of intermediate project deliverables 
is assessed based on the expected level (documented 
as acceptance/quality criteria or not) of quality using 
review techniques. Product non-quality (discrepancy 
between actual and expected product quality) is 
reported and will be considered and treated as any 
other anomaly detected during the (test) project (see 
“Manage Anomalies” activity). The focus will be both 
on the intermediate project deliverables that serve as 
the test project’s test basis, and on the test project’s 
deliverables.

QM 6.2.2 Define Product Improvements                                                        
Actions to remediate reported product non-quality 
are defined. At the same time, if not already available 
from the project’s test approach or the corporate’s 
test strategy, metrics that can be used to measure the 
product quality level will be defined.     

QM 6.2.3 Plan Product Improvements                                                                                   
Defined actions to remediate product non-quality are 
planned for execution. In addition to this, activities 
for collecting data measures and calculating defined 
metrics to measure product improvements (before/
after) are planned.

QM 6.2.4 Implement Product 
Improvements                                                                              
A “before picture” of the respective product quality is 
created. Planned actions for collecting data measures 
and calculating “before” metrics are executed. Once 
the before picture is created, actions for remediating 
respective product quality are executed as planned.               

QM 6.2.5 Verify Product Improvements                                                                                          
Once the product improvements have been 
implemented, planned actions for collecting data 
measures and calculating “after” metrics are 
executed. Based on the before and after metrics, 
the actual product improvement is verified. When 
the improvements prove to be insufficient, the 
improvement cycle might be repeated.

QM 6.2.1

Assess 
Product 
Quality       

Plan Product 
Improvements                                        

Define 
Product 
Improvements                                 

Implement 
Product 
Improvements                        

Verify Product 
Improvements                                  

QM 6.2.2 QM 6.2.3 QM 6.2.4 QM 6.2.5



80 Quality Management

Maturity
The testing activity “Monitor Product” 
that satisfies the business requirement of 
ensuring that all intermediate products 
delivered during the project will have 
the desired level of quality is at:

Initial level
The “Monitor Product” testing activity is 
executed in an uncontrolled and chaotic way.

• The activity is not organized for all projects.

• If the activity is executed, it is executed in 
a chaotic and ad hoc manner.

Starter level
The test manager selects part of the 
project’s test deliverables for review. 
Principal stakeholders informally review the 
selected deliverables and address product 
non-quality as deemed necessary.

• For each project, the main test 
deliverables are reviewed by principal 
stakeholders, e.g.,

 – The test plan is reviewed by principal 
stakeholders.

 – The test basis is reviewed by the  
test team.

 – The test design is reviewed by the test 
manager, developers, or analysts.

• Informal reviewing techniques are used 
to identify product non-quality.

• Original authors decide what product 
non-quality will be addressed.

• Original authors define the improvement 
actions to be implemented.

• There is no formal follow-up process 
that addresses the final closure of the 
identified product non-quality.

Experienced level
Principal stakeholders review intermediate 
project deliverables as defined in the 
(test) project’s review plan that is created 

by the test manager or a quality manager 
dedicated to the project. All defined 
product non-quality is treated through the 
“Manage Anomalies” activity.

• For each project, the test manager 
or quality manager (dedicated to the 
project) will draw up a review plan 
indicating quality gates at which the 
project’s intermediate deliverables will be 
reviewed, by whom, and what techniques 
should be used to do so.

• Reviewing techniques can range from 
informal reviews, to walkthroughs, to 
technical reviews. 

• Formal acceptance or quality criteria 
are defined for each of the project’s 
intermediate deliverables that should  
be reviewed.

• Identified product non-quality is logged 
in the project’s anomalies repository.

• Identified product non-quality is 
managed to a final closure through the 
“Manage Anomalies” activity.

• The impact of the product improvement 
actions is monitored.

Master level
All stakeholders review intermediate 
project deliverables as defined in the 
project’s test approach that is created by 
the test manager (with the help of the 
quality manager of the test project). Also, 
external (not organized by the project) 
audits can add to the detection of product 
non-quality. All defined product non-
quality is treated through the “Manage 
Anomalies” activity. 

• For each project, quality gates and 
corresponding reviews of the project’s 
intermediate deliverables are part of 
the global project’s test approach. The 
approach doesn’t differentiate between 
intermediate and end products. 

• All types of reviewing techniques 
(informal review, walkthrough, technical 
review, inspection, expert opinion, demo, 
witnessing) are applied.



STBoX 3.0 Generic Software Testing Process Framework 81

• Formal acceptance or quality criteria are 
defined for each of the test deliverables 
that should be reviewed.

• Identified product weaknesses are added 
to the corporate anomalies repository.

• Identified product weaknesses are 
managed to final closure through the 
“Manage Anomalies” activity.

• The impact of the product improvement 
actions is measured.

Agile Testing  
Add-ons

Product Quality Assessment
The first principle described in the Agile manifesto is, 
“Our highest priority is to satisfy the customer through 
early and continuous delivery of valuable software.”

The expected quality level is defined up front and 
formalized in the definition of done on the feature, 
iteration, and release levels. The definition of done is 
reviewed and, if needed, adapted in order to improve 
the quality on a regular basis. 

Incremental and iterative development allows the 
team members to improve constantly and to deliver 
the expected quality. The quality of the product is 
continuously monitored and product improvements 
can be suggested during the complete life cycle, but 
especially during the review meeting.

In general, team members can suggest product 
improvements to the product owner during the 
whole iteration.

Review Meeting
Customers and end users rarely know what they want 
until they see working software. In Scrum, at the end 
of each sprint, the new features of the product are 
demonstrated to the product owner, stakeholders, and 
customer during the review meeting. 

The review meeting provides the opportunity to 
inspect, adapt, and optimize the product based on the 
gained experience and understanding. The product 
owner decides if proposed improvements have any 
added value to the customer. In the event that a 
suggested improvement is accepted by the product 
owner, a new backlog item is added to the product 
backlog, prioritized, and estimated by the team. 

The implementation of accepted improvements is 
handled in the same way as other features from the 
product backlog. 

 

 



82

Goals
The test manager or (independent) quality 
manager will assess the quality of the test 
process that is followed throughout the 
test project.

Compliance with applicable standard 
testing processes or corporate test 
strategy and test policy (if available) is 
checked. Discrepancies are reported 
and possible improvement actions are 
suggested. Implementation of these 
improvement actions (when deemed 
both necessary and possible) can also 
be part of this activity. When, for some 
reason, it is decided not to implement 
the suggested improvements, these 
suggestions should be referred to the 
final test evaluation report.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control over the testing process of monitoring the 
quality of the test process that satisfies the business 
requirement for testing of making sure that the test 
process that is being used is effective (doing the 
right things) and efficient (doing the things right) by 
focusing on:

• Comparing compliance of the actual test process 
with the intended or documented test process

• Determining and reporting non-compliance 
(deviations from intended or documented test 
process) of the actual test process

• Taking the necessary measures to remediate all 
reported non-compliancy of the project’s test process

• Detecting and reporting shortcomings and 
insufficiencies of the intended or documented  
test process

• Taking the necessary measures to remediate all 
reported deficiencies of the intended or documented 
test process

and is achieved by

• Assessing process quality

• Defining process improvements

• Planning process improvements

• Implementing process improvements

• Verifying process improvements

6. Quality Management (QM)
6.3 Monitor Process

Quality Management



STBoX 3.0 Generic Software Testing Process Framework 83

During this testing activity, testing staff (and other relevant stakeholders)  
will proceed according to the following steps.

Steps

QM 6.3.1 Assess Process Quality                                                          
The quality level of the project’s test process is 
checked based on the intended (not documented) or 
expected (documented in the corporate test policy 
or test strategy) level of quality. This happens on a 
daily basis and can be considered to be part of the 
“Monitor and Adjust Test Plan” activity. 

In the event that process non-quality is identified, 
applying more formal (test) process assessment 
methods can deliver more detailed information on the 
process non-quality. Process non-quality can originate 
from non-compliance of the actual test process with the 
intended or expected test process, or from deficiencies 
in the intended or expected test process. Regardless of 
the origin, all process non-quality is reported.

QM 6.3.2 Define Process 
Improvements                                                        
Actions to remediate reported process non-quality are 
defined. At the same time, if not already available from 
the corporate’s test policy or test strategy, metrics that 
can be used to measure the test process quality level 
will be defined.      
 
 
 
 
 
 
 

QM 6.3.3 Plan Process Improvements                                                                                 
Based on available resources (time, budget, people), 
defined actions to remediate process non-quality are 
planned for execution. Activities for collecting data 
measures and calculating defined metrics to measure 
process improvements (before/after) are also planned. 
All process non-quality due to non-conformance with 
the intended or expected test process should be 
addressed during the test project. Actions to resolve 
deficiencies of the test process can be postponed or 
referred to a higher level of responsibility.

QM 6.3.4 Implement Process 
Improvements                                                                                   
A “before picture” of the respective process quality is 
created. Planned actions for collecting data measures 
and calculating “before” metrics are executed. Once 
the before picture is created, actions for remediating 
respective process quality are executed as planned.              

QM 6.3.5 Verify Process Improvements                                                                                                                    
Once the process improvements have been 
implemented, planned actions for collecting data 
measures and calculating “after” metrics are executed. 
Based on the before and after metrics, actual process 
improvement is verified. When the improvement 
proves to be insufficient, the improvement cycle might 
be repeated.               

QM 6.3.1

Assess Process 
Quality                                              

Plan Process 
Improvements                                      

Define Process 
Improvements                                 

Implement 
Process 
Improvements                        

Verify Process 
Improvements                                  

QM 6.3.2 QM 6.3.3 QM 6.3.4 QM 6.3.5



84 Quality Management

Maturity
The testing activity “Monitor Process” 
that satisfies the business requirement of 
making sure that the test process that is 
being used is effective (doing the right 
things) and efficient (doing the things  
right) is at:

Initial level
The “Monitor Process” testing activity is 
executed in an uncontrolled and chaotic way.

• The activity is not organized for all projects.

• If the activity is executed, it is executed in 
a chaotic and ad hoc manner.

Starter level
Determining and improving test process 
non-quality is incorporated into the 
daily activity of following up on the test 
project. The test manager responds to 
the determined process non-quality 
on an ad hoc basis. The test manager 
identifies which process non-quality is 
addressed by taking into account feasibility 
(available resources) and plans test process 
improvement actions accordingly.

• For each project, the test process is 
monitored.

• The process monitoring is merely part 
of the “Monitor and Adjust Test Plan” 
activity.

• Process monitoring is executed in a 
rather informal way; the test manager 
reacts to process weaknesses that are 
observed during daily follow up of the 
test project.

• It is the test manager who, in the 
end, decides whether the process 
weaknesses will be addressed and how 
this will be done.

• The test manager escalates test process 
improvement actions that are beyond 
the scope of his mandate to the project 
manager.

• Defined test process improvement 
measures are implemented in an ad  
hoc manner. 

Experienced level
Determining and improving test process 
non-quality is incorporated into the daily 
activity of following up the test project. 
Together with principal stakeholders, 
the test manager and quality manager 
identify what process non-quality will 
be addressed by taking into account 
feasibility (available resources) and 
incorporate test process improvement 
actions into the global test project.

• For each project, the test process is 
monitored.

• The process monitoring is part of the 
“Monitor and Adjust Test Plan” activity. 

• When possible process non-quality is 
identified, the test manager can decide 
to organize a formal (self-) evaluation 
of the test process (by the test team 
and principal stakeholders) or a formal 
test process assessment guided by the 
project’s or company’s quality manager or 
an external test consultant.

• The test manager and/or quality manager 
discuss possible process improvement 
measures with principal stakeholders. 
Together, they decide on the process 
improvements that will be addressed in 
the ongoing test project (given available 
resources and quality constraints).

• Defined and agreed-upon test process 
improvement actions are incorporated 
into the global test plan (see “Plan Test 
Project” and “Monitor and Adjust Test 
Plan” activities).

• Test process improvement actions that 
cannot be implemented in the scope of 
the (current) test project are drafted in a 
lessons-learned report.

• The impact of test process improvement 
actions is monitored.

 



STBoX 3.0 Generic Software Testing Process Framework 85

Master level
Determining and improving test process 
non-quality is incorporated into the daily 
activity of following up on the test project. 
However, external (not organized by the 
project) audits can be a secondary source 
of test process non-quality determination. 
Together with relevant stakeholders, the 
test manager and quality manager identify 
what process non-quality is addressed by 
taking into account feasibility (available 
resources) and incorporate test process 
improvement actions into the global  
test project. 

• For each project, the test process is 
monitored.

• The process monitoring is part of the 
“Monitor and Adjust Test Plan” activity.

• When possible process weaknesses are 
identified, the test manager can decide 
to organize a formal (self-) evaluation of 
the test process (by the test team and 
all stakeholders) or a formal test process 
assessment guided by the project’s or 
company’s quality manager or an external 
test consultant.

• In addition to the daily follow up, and in 
line with the corporate quality policy, an 
(external) test process assessment can 
also be organized.

• The test manager and/or quality manager 
discuss possible process improvement 
measures with all stakeholders. Together, 
they decide on the test process 
improvements that will be addressed 
in the ongoing test project (given time, 
resource, and quality constraints).

• Defined and agreed-upon test process 
improvement actions are incorporated 
into the global test plan (see “Plan Test 
Project” and “Monitor and Adjust Test 
Plan” activities).

• Test process improvement actions that 
cannot be implemented in the scope of 
the (current) test project are drafted in a 
lessons-learned report.

• The impact of test process improvement 
actions is measured.

Agile Testing  
Add-ons

Retrospective
Agile promotes continuous improvement, as described 
in one of the 12 Agile principles, “At regular intervals, 
the team reflects on how to become more effective, 
then tunes and adjusts its behavior accordingly.” 
In Scrum, the forum to define regular process 
improvements is the sprint retrospective. The Scrum 
master facilitates the retrospective.

The main purpose of the retrospective is to inspect 
how the last iteration went. The team members look for 
improvements regarding the current process they are 
following (not only with regard to process, but also to 
people and technology). They will identify what went 
well and what could be improved on in the next sprint, 
taking the strengths and weaknesses of the process 
into account. The focus of these improvements is often 
limited to the team or sprint achievements and less on 
cross-project learning.

From a testing point of view, any improvement that 
enables the team to deliver higher quality during the 
sprint is welcome. Process improvements are generally 
planned for the next iteration, monitored daily, and 
followed up on. During the next retrospective meeting, 
the team verifies if the improvements had any added 
value to the team and decides to keep, adapt, or stop 
the action(s).

Retrospective Tools
There are several tools available to keep retrospective 
meetings interesting and to collect as much information 
as possible:

• Happiness Histogram

• Six Hats Thinking

• Retrospective questions

• 5 Whys and the 5 Whys Retrospective

• One Word Retrospective

• Retrospective Dialogue Sheets

• Retrospectives with Lego

• Perfection Game



86 Acknowledgments

The STBoX 3.0 generic software testing process 
framework is the result of a joint effort by many CTG 
colleagues, each adding their bit to the whole. Without 
them, it would never have been possible to create 
this solid, practical, and experience-based framework. 
Thank you to all of these colleagues! STBoX 3.0 is an 
achievement made possible by all of you.

Operating under the umbrella of “CTG Labs,” CTG’s 
Research and Development solution, STBoX 3.0 was 
created by CTG’s “STBoX Center of Excellence.” Thank 
you to all of the CTG test consultants who participated 
in the Center of Excellence during the last few years: 
Nicky Andries, Michael Arefi, Sven Borghers, Yannick 
Brabants, Pascal Collard, Stefan De Cap, Timothy 
De Luyck, Sven Du Four, Jochen Gyssels, Kevin 
Herinckx, Gunther Leonhardt, Stijn Mullie, Christian 
Mwizerwa, Kaj Schittecat, Alexander Siccard, and 
Olaf Skwara. Thank you for taking the time to share 
your experiences, perform research, create new ideas, 
and put it all on paper. It was your contributions in 
the first place that made it possible to create this 
framework.

A special thanks to Alessandra Glista, Emilie 
Laubacker, and Christine Vermeiren, our colleagues 
from the Marketing department, who helped edit and 
lay out the booklet. Also, a special thanks to Kevin 
Boutsen for developing the STBoX 3.0 website.

Last but not least, a big thank you to the members 
of our CTG management for their support: Pieter 
Vanhaecke, Bob Daelman, Amanda LeBlanc, and  
Filip Gydé.

STBoX 3.0: The Road to 
Testing Maturity 
Since CTG released its first version of STBoX (Software 
Testing Based on CTG eXperience), software 
testing has come a long way. Most companies have 
software testing in place as one of their mainstream 
development activities and software testing is 
often being executed by skilled and trained testing 
professionals. It’s no longer a question of introducing 
software testing, but a question of how software 
testing can be improved to face new challenges. 
DevOps and shortened time to market, the internet of 
things and the multitude of mobile devices, and the 

ever-increasing importance of quality characteristics 
like security, performance, and usability are only a few 
examples of current software testing challenges that 
need to be conquered.

STBoX 3.0 will help in dealing with these challenges. It 
represents the evolution of STBoX from a methodology 
for software testing (released in 2006), to a software 
testing knowledge base for different environments 
(released in 2009), to this generic software testing 
process framework, applicable to many different 
situations and contexts. STBoX 3.0 offers project 
managers, test managers, and quality managers a 
generic software testing process that can be tailored 
to the particular needs of their project. STBoX 3.0 
also offers policy makers a generic testing maturity 
model to measure and improve their company’s testing 
processes as needed. Finally, STBoX 3.0 also offers all 
test professionals a source of inspiration to get their 
testing started quickly.

STBoX 3.0 was created by CTG’s “STBoX Center 
of Excellence” collecting and consolidating the 
experience of its 120 test consultants who are active in 
many test assignments and deal with current software 
testing challenges on a daily basis. The Center of 
Excellence is led by Sven Borghers and Michael Arefi. 
Together, they share nearly 35 years of software testing 
experience.

Sven Borghers is a Senior Test Consultant with nearly 
20 years of experience with all aspects of testing. 
He has contributed to many different assignments 
involving test execution, test design, test coordination, 
test management, and test process improvement. 
In addition to his consultancy work, he is also a well-
appreciated trainer and coach due to his experience 
and ability to provide real-life testing examples. Sven 
has been the driving force behind the STBoX Center of 
Excellence for many years.

Michael Arefi is a Senior Test Manager with more than 
15 years of experience, built during the many projects 
in which he has held various roles, both in classical 
and Agile environments. Michael specializes in leading 
Agile projects. As a Scrum master, he successfully 
proved that this role can be perfectly fulfilled by a 
tester. Apart from his contribution to STBoX Center 
of Excellence, Michael is also the lead of CTG’s Agile 
Center of Excellence.

STBoX 3.0 is also available on www.stbox.eu.

Acknowledgments



STBoX 3.0 Generic Software Testing Process Framework 87

Bach, James, and Michael Bolton. “Rapid Software Testing – Appendices.” Published class lecture. Satisfice, Inc.,   
 2015. http://www.satisfice.com/rst-appendices.pdf.

Cohn, Mike. Succeeding with Agile: Software Development Using Scrum. Ann Arbor: Addison-Wesley, 2009.

Crispin, Lisa, and Janet Gregory. Agile Testing: A Practical Guide for Testers and Agile Teams. Crawfordsville:   
 Addison-Wesley, 2009.

Hand, Richard. “ ‘In-The-Wild Testing’: The Missing Link in the QA Chain.” Software Test Professionals. January  
 26, 2012. http://www.softwaretestpro.com/Item/5422/”In-The-Wild-Testing”-The-Missing-Link-in-the-QA- 
 Chain/Test-and-QA-Software-Test-Professionals-Conference.

Kohl, Jonathan. Tap Into Mobile Application Testing. Victoria, British Columbia: Leanpub, 2013.  
 https://leanpub.com/testmobileapps.

Miller, Jessica. “5 Killer Hallway Usability Testing Tips.” Usability Lab (blog). September 17, 2014.  
 http://usabilitylab.walkme.com/5-killer-hallway-usability-testing-tips/.

Tuckman, Bruce. “Developmental Sequence in Small Groups.” Psychological Bulletin Vol 63, no. 6 (June 1965):  
 384-399. http://dx.doi.org/10.1037/h0022100.

Wake, William. “INVEST in Good Stories, and Smart Tasks.” XP123 Exploring Extreme Programming (blog).  
 August 17, 2003. xp123.com/articles/invest-in-good-stories-and-smart-tasks/. 

Bibliography



Published by Computer Task Group, Inc.

The information in this presentation is 

proprietary. In no event shall all or any portion of 

this presentation be disclosed or disseminated 

without the express written permission of CTG. 

The CTG logo is a registered trademark of CTG

CTG provides industry-specific IT services and 

solutions that address the business needs and 

challenges of clients in high-growth industries 

in North America and Western Europe. CTG 

also provides strategic staffing services for 

major technology companies and large 

corporations. Backed by 50 years of experience 

and proprietary methodologies, CTG has a 

proven track record of reliably delivering high-

value, industry-specific staffing services and 

solutions to its clients. CTG has operations in 

North America, Western Europe, and India. 

The company regularly posts news and other 

important information online at www.ctg.com.

© 2016 Computer Task Group, Inc. All Rights Reserved
www.ctg.com


